{"title":"Orchestrating Penta-Element Interplay in Gradient-porous Carbons for Advanced Sodium-Ion Hybrid Capacitors.","authors":"Yangjie Liu,Yao Guo,Yu Zhang,Lihong Xu,Junxiang Chen,Xiang Hu,Zhenhai Wen","doi":"10.1002/anie.202505469","DOIUrl":null,"url":null,"abstract":"Sodium-ion hybrid capacitors (SIHCs) offer a cutting-edge synergy between battery-level energy density and supercapacitor-like power density, yet face critical challenges in balancing the kinetic and capacity mismatch between Faradaic anodes and capacitive cathodes. Herein, we present a penta-element doped gradient-porous carbon (PE-GPC) with a nanosphere architecture, engineered with high-entropy principles and a gradual pore density variation to enhance mass transport and charge storage. Operando spectroscopy and machine learning potentials unveil a concerted penta-element interplay: Thiophene-like S configurations mediate dynamic redox processes, enabling pseudocapacitive Na+ and anion storage, while fluorine functionalities foster a self-rejuvenating NaF-rich solid electrolyte interphase (SEI), stabilizing long-term cycling. Meanwhile, the synergistic N/B/P triad engineers a hierarchical defect network that enhances electronic conductivity and fine-tunes ion adsorption energetics. This orchestrated interplay empowers the SIHC full-cell with a high energy density of 196 Wh kg-1, a formidable power density (10.4 kW kg-1), and an impressive 88.2% capacity retention after 9000 cycles. By establishing a high-entropy stabilization paradigm, this work paves the way for multi-ion storage architectures, offering a universal strategy to bridge the charge-transfer imbalance in advanced energy devices.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"19 1","pages":"e202505469"},"PeriodicalIF":16.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion hybrid capacitors (SIHCs) offer a cutting-edge synergy between battery-level energy density and supercapacitor-like power density, yet face critical challenges in balancing the kinetic and capacity mismatch between Faradaic anodes and capacitive cathodes. Herein, we present a penta-element doped gradient-porous carbon (PE-GPC) with a nanosphere architecture, engineered with high-entropy principles and a gradual pore density variation to enhance mass transport and charge storage. Operando spectroscopy and machine learning potentials unveil a concerted penta-element interplay: Thiophene-like S configurations mediate dynamic redox processes, enabling pseudocapacitive Na+ and anion storage, while fluorine functionalities foster a self-rejuvenating NaF-rich solid electrolyte interphase (SEI), stabilizing long-term cycling. Meanwhile, the synergistic N/B/P triad engineers a hierarchical defect network that enhances electronic conductivity and fine-tunes ion adsorption energetics. This orchestrated interplay empowers the SIHC full-cell with a high energy density of 196 Wh kg-1, a formidable power density (10.4 kW kg-1), and an impressive 88.2% capacity retention after 9000 cycles. By establishing a high-entropy stabilization paradigm, this work paves the way for multi-ion storage architectures, offering a universal strategy to bridge the charge-transfer imbalance in advanced energy devices.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.