Orchestrating Penta-Element Interplay in Gradient-porous Carbons for Advanced Sodium-Ion Hybrid Capacitors.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yangjie Liu,Yao Guo,Yu Zhang,Lihong Xu,Junxiang Chen,Xiang Hu,Zhenhai Wen
{"title":"Orchestrating Penta-Element Interplay in Gradient-porous Carbons for Advanced Sodium-Ion Hybrid Capacitors.","authors":"Yangjie Liu,Yao Guo,Yu Zhang,Lihong Xu,Junxiang Chen,Xiang Hu,Zhenhai Wen","doi":"10.1002/anie.202505469","DOIUrl":null,"url":null,"abstract":"Sodium-ion hybrid capacitors (SIHCs) offer a cutting-edge synergy between battery-level energy density and supercapacitor-like power density, yet face critical challenges in balancing the kinetic and capacity mismatch between Faradaic anodes and capacitive cathodes. Herein, we present a penta-element doped gradient-porous carbon (PE-GPC) with a nanosphere architecture, engineered with high-entropy principles and a gradual pore density variation to enhance mass transport and charge storage. Operando spectroscopy and machine learning potentials unveil a concerted penta-element interplay: Thiophene-like S configurations mediate dynamic redox processes, enabling pseudocapacitive Na+ and anion storage, while fluorine functionalities foster a self-rejuvenating NaF-rich solid electrolyte interphase (SEI), stabilizing long-term cycling. Meanwhile, the synergistic N/B/P triad engineers a hierarchical defect network that enhances electronic conductivity and fine-tunes ion adsorption energetics. This orchestrated interplay empowers the SIHC full-cell with a high energy density of 196 Wh kg-1, a formidable power density (10.4 kW kg-1), and an impressive 88.2% capacity retention after 9000 cycles. By establishing a high-entropy stabilization paradigm, this work paves the way for multi-ion storage architectures, offering a universal strategy to bridge the charge-transfer imbalance in advanced energy devices.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"19 1","pages":"e202505469"},"PeriodicalIF":16.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion hybrid capacitors (SIHCs) offer a cutting-edge synergy between battery-level energy density and supercapacitor-like power density, yet face critical challenges in balancing the kinetic and capacity mismatch between Faradaic anodes and capacitive cathodes. Herein, we present a penta-element doped gradient-porous carbon (PE-GPC) with a nanosphere architecture, engineered with high-entropy principles and a gradual pore density variation to enhance mass transport and charge storage. Operando spectroscopy and machine learning potentials unveil a concerted penta-element interplay: Thiophene-like S configurations mediate dynamic redox processes, enabling pseudocapacitive Na+ and anion storage, while fluorine functionalities foster a self-rejuvenating NaF-rich solid electrolyte interphase (SEI), stabilizing long-term cycling. Meanwhile, the synergistic N/B/P triad engineers a hierarchical defect network that enhances electronic conductivity and fine-tunes ion adsorption energetics. This orchestrated interplay empowers the SIHC full-cell with a high energy density of 196 Wh kg-1, a formidable power density (10.4 kW kg-1), and an impressive 88.2% capacity retention after 9000 cycles. By establishing a high-entropy stabilization paradigm, this work paves the way for multi-ion storage architectures, offering a universal strategy to bridge the charge-transfer imbalance in advanced energy devices.
先进钠离子杂化电容器中梯度多孔碳中五元素相互作用的协调。
钠离子混合电容器(sihc)在电池级能量密度和类似超级电容器的功率密度之间提供了先进的协同作用,但在平衡法拉第阳极和电容阴极之间的动力学和容量不匹配方面面临着严峻的挑战。在此,我们提出了一种具有纳米球结构的五元素掺杂梯度多孔碳(PE-GPC),采用高熵原理和逐渐变化的孔密度来增强质量传输和电荷存储。Operando光谱和机器学习电位揭示了一种协调一致的五元素相互作用:类噻吩S结构介导动态氧化还原过程,实现假电容性Na+和阴离子存储,而氟功能促进自我恢复的富含naf的固体电解质间相(SEI),稳定长期循环。同时,协同的N/B/P三元组设计了一个分层缺陷网络,增强了电子导电性并微调了离子吸附能量。这种精心安排的相互作用使SIHC全电池具有高达196 Wh kg-1的高能量密度,强大的功率密度(10.4 kW kg-1),并在9000次循环后保持令人印象深刻的88.2%的容量。通过建立高熵稳定范式,这项工作为多离子存储架构铺平了道路,为弥合先进能源设备中的电荷转移不平衡提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信