Hyperspectral Imaging Combined With Deep Learning for Precision Grading of Clear Cell Renal Cell Carcinoma

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Guoxia Zhang, Jing Zhang, Xulei Wang, Lv Haiyue, Mengqiu Zhang, Chunlei Wang, Xiaoqing Yang
{"title":"Hyperspectral Imaging Combined With Deep Learning for Precision Grading of Clear Cell Renal Cell Carcinoma","authors":"Guoxia Zhang,&nbsp;Jing Zhang,&nbsp;Xulei Wang,&nbsp;Lv Haiyue,&nbsp;Mengqiu Zhang,&nbsp;Chunlei Wang,&nbsp;Xiaoqing Yang","doi":"10.1002/jbio.202500180","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents an integrated approach combining hyperspectral imaging (HSI) and deep learning for accurate grading of clear cell renal cell carcinoma (ccRCC). A refined preprocessing pipeline—including wavelet-based denoising and principal component analysis (PCA)—effectively enhances image quality and reduces data dimensionality. The proposed architecture utilizes a 1D convolutional neural network with attention mechanisms and a Transformer module to extract both local spectral features and global contextual information. Evaluated on a dataset of 80 ccRCC samples, the model achieves 90.32% accuracy, 89.65% sensitivity, and 90.15% specificity, outperforming several state-of-the-art models. These findings demonstrate the potential of HSI-based deep learning systems to improve diagnostic accuracy and support more precise, personalized treatment planning in renal oncology.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500180","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an integrated approach combining hyperspectral imaging (HSI) and deep learning for accurate grading of clear cell renal cell carcinoma (ccRCC). A refined preprocessing pipeline—including wavelet-based denoising and principal component analysis (PCA)—effectively enhances image quality and reduces data dimensionality. The proposed architecture utilizes a 1D convolutional neural network with attention mechanisms and a Transformer module to extract both local spectral features and global contextual information. Evaluated on a dataset of 80 ccRCC samples, the model achieves 90.32% accuracy, 89.65% sensitivity, and 90.15% specificity, outperforming several state-of-the-art models. These findings demonstrate the potential of HSI-based deep learning systems to improve diagnostic accuracy and support more precise, personalized treatment planning in renal oncology.

Abstract Image

高光谱成像结合深度学习对透明细胞肾细胞癌的精确分级。
本研究提出了一种结合高光谱成像(HSI)和深度学习的透明细胞肾细胞癌(ccRCC)准确分级的综合方法。精细的预处理流程——包括基于小波的去噪和主成分分析(PCA)——有效地提高了图像质量,降低了数据维数。所提出的架构利用具有注意机制的一维卷积神经网络和Transformer模块来提取局部光谱特征和全局上下文信息。在80个ccRCC样本的数据集上进行评估,该模型达到了90.32%的准确率,89.65%的灵敏度和90.15%的特异性,优于几个最先进的模型。这些发现证明了基于hsi的深度学习系统在提高肾肿瘤诊断准确性和支持更精确、个性化的治疗计划方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信