Naveen Jeyaraman, Madhan Jeyaraman, Priya Dhanpal, Swaminathan Ramasubramanian, Arulkumar Nallakumarasamy, Sathish Muthu, Gabriel Silva Santos, Lucas Furtado da Fonseca, José Fábio Lana
{"title":"Integrative review of the gut microbiome's role in pain management for orthopaedic conditions.","authors":"Naveen Jeyaraman, Madhan Jeyaraman, Priya Dhanpal, Swaminathan Ramasubramanian, Arulkumar Nallakumarasamy, Sathish Muthu, Gabriel Silva Santos, Lucas Furtado da Fonseca, José Fábio Lana","doi":"10.5493/wjem.v15.i2.102969","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome, a complex ecosystem of microorganisms, has a significant role in modulating pain, particularly within orthopaedic conditions. Its impact on immune and neurological functions is underscored by the gut-brain axis, which influences inflammation, pain perception, and systemic immune responses. This integrative review examines current research on how gut dysbiosis is associated with various pain pathways, notably nociceptive and neuroinflammatory mechanisms linked to central sensitization. We highlight advancements in meta-omics technologies, such as metagenomics and metaproteomics, which deepen our understanding of microbiome-host interactions and their implications in pain. Recent studies emphasize that gut-derived short-chain fatty acids and microbial metabolites play roles in modulating neuroinflammation and nociception, contributing to pain management. Probiotics, prebiotics, synbiotics, and faecal microbiome transplants are explored as potential therapeutic strategies to alleviate pain through gut microbiome modulation, offering an adjunct or alternative to opioids. However, variability in individual microbiomes poses challenges to standardizing these treatments, necessitating further rigorous clinical trials. A multidisciplinary approach combining microbiology, immunology, neurology, and orthopaedics is essential to develop innovative, personalized pain management strategies rooted in gut health, with potential to transform orthopaedic pain care.</p>","PeriodicalId":75340,"journal":{"name":"World journal of experimental medicine","volume":"15 2","pages":"102969"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5493/wjem.v15.i2.102969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiome, a complex ecosystem of microorganisms, has a significant role in modulating pain, particularly within orthopaedic conditions. Its impact on immune and neurological functions is underscored by the gut-brain axis, which influences inflammation, pain perception, and systemic immune responses. This integrative review examines current research on how gut dysbiosis is associated with various pain pathways, notably nociceptive and neuroinflammatory mechanisms linked to central sensitization. We highlight advancements in meta-omics technologies, such as metagenomics and metaproteomics, which deepen our understanding of microbiome-host interactions and their implications in pain. Recent studies emphasize that gut-derived short-chain fatty acids and microbial metabolites play roles in modulating neuroinflammation and nociception, contributing to pain management. Probiotics, prebiotics, synbiotics, and faecal microbiome transplants are explored as potential therapeutic strategies to alleviate pain through gut microbiome modulation, offering an adjunct or alternative to opioids. However, variability in individual microbiomes poses challenges to standardizing these treatments, necessitating further rigorous clinical trials. A multidisciplinary approach combining microbiology, immunology, neurology, and orthopaedics is essential to develop innovative, personalized pain management strategies rooted in gut health, with potential to transform orthopaedic pain care.