Mpox lesion counting with semantic and instance segmentation methods.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-05-01 Epub Date: 2025-06-19 DOI:10.1117/1.JMI.12.3.034506
Bohan Jiang, Andrew J McNeil, Yihao Liu, David W House, Placide Mbala-Kingebeni, Olivier Tshiani Mbaya, Tyra Silaphet, Lori E Dodd, Edward W Cowen, Veronique Nussenblatt, Tyler Bonnett, Ziche Chen, Inga Saknite, Benoit M Dawant, Eric R Tkaczyk
{"title":"Mpox lesion counting with semantic and instance segmentation methods.","authors":"Bohan Jiang, Andrew J McNeil, Yihao Liu, David W House, Placide Mbala-Kingebeni, Olivier Tshiani Mbaya, Tyra Silaphet, Lori E Dodd, Edward W Cowen, Veronique Nussenblatt, Tyler Bonnett, Ziche Chen, Inga Saknite, Benoit M Dawant, Eric R Tkaczyk","doi":"10.1117/1.JMI.12.3.034506","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Mpox is a viral illness with symptoms similar to smallpox. A key clinical metric to monitor disease progression is the number of skin lesions. Manually counting mpox skin lesions is labor-intensive and susceptible to human error.</p><p><strong>Approach: </strong>We previously developed an mpox lesion counting method based on the UNet segmentation model using 66 photographs from 18 patients. We have compared four additional methods: the instance segmentation methods Mask R-CNN, YOLOv8, and E2EC, in addition to a UNet++ model. We designed a patient-level leave-one-out experiment, assessing their performance using <math><mrow><mi>F</mi> <mn>1</mn></mrow> </math> score and lesion count metrics. Finally, we tested whether an ensemble of the networks outperformed any single model.</p><p><strong>Results: </strong>Mask R-CNN model achieved an <math><mrow><mi>F</mi> <mn>1</mn></mrow> </math> score of 0.75, YOLOv8 a score of 0.75, E2EC a score of 0.70, UNet++ a score of 0.81, and baseline UNet a score of 0.79. Bland-Altman analysis of lesion count performance showed a limit of agreement (LoA) width of 62.2 for Mask R-CNN, 91.3 for YOLOv8, 94.2 for E2EC, and 62.1 for UNet++, with the baseline UNet model achieving 69.1. The ensemble showed an <math><mrow><mi>F</mi> <mn>1</mn></mrow> </math> score performance of 0.78 and LoA width of 67.4.</p><p><strong>Conclusions: </strong>Instance segmentation methods and UNet-based semantic segmentation methods performed equally well in lesion counting. Furthermore, the ensemble of the trained models showed no performance increase over the best-performing model UNet, likely because errors are frequently shared across models. Performance is likely limited by the availability of high-quality photographs for this complex problem, rather than the methodologies used.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 3","pages":"034506"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.3.034506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Mpox is a viral illness with symptoms similar to smallpox. A key clinical metric to monitor disease progression is the number of skin lesions. Manually counting mpox skin lesions is labor-intensive and susceptible to human error.

Approach: We previously developed an mpox lesion counting method based on the UNet segmentation model using 66 photographs from 18 patients. We have compared four additional methods: the instance segmentation methods Mask R-CNN, YOLOv8, and E2EC, in addition to a UNet++ model. We designed a patient-level leave-one-out experiment, assessing their performance using F 1 score and lesion count metrics. Finally, we tested whether an ensemble of the networks outperformed any single model.

Results: Mask R-CNN model achieved an F 1 score of 0.75, YOLOv8 a score of 0.75, E2EC a score of 0.70, UNet++ a score of 0.81, and baseline UNet a score of 0.79. Bland-Altman analysis of lesion count performance showed a limit of agreement (LoA) width of 62.2 for Mask R-CNN, 91.3 for YOLOv8, 94.2 for E2EC, and 62.1 for UNet++, with the baseline UNet model achieving 69.1. The ensemble showed an F 1 score performance of 0.78 and LoA width of 67.4.

Conclusions: Instance segmentation methods and UNet-based semantic segmentation methods performed equally well in lesion counting. Furthermore, the ensemble of the trained models showed no performance increase over the best-performing model UNet, likely because errors are frequently shared across models. Performance is likely limited by the availability of high-quality photographs for this complex problem, rather than the methodologies used.

基于语义和实例分割方法的Mpox病变计数。
目的:Mpox是一种病毒性疾病,其症状与天花相似。监测疾病进展的关键临床指标是皮肤病变的数量。手动计算痘皮损是一项劳动密集型工作,容易出现人为错误。方法:我们先前开发了一种基于UNet分割模型的m痘病变计数方法,使用来自18名患者的66张照片。我们比较了另外四种方法:实例分割方法Mask R-CNN, YOLOv8和E2EC,以及unnet++模型。我们设计了一个患者水平的留一实验,使用f1评分和病变计数指标评估他们的表现。最后,我们测试了网络集合是否优于任何单一模型。结果:Mask R-CNN模型f1评分为0.75,YOLOv8评分为0.75,E2EC评分为0.70,UNet++评分为0.81,基线UNet评分为0.79。Bland-Altman病灶计数性能分析显示,Mask R-CNN的LoA宽度极限为62.2,YOLOv8为91.3,E2EC为94.2,UNet++为62.1,基线UNet模型达到69.1。整体的f1得分表现为0.78,LoA宽度为67.4。结论:实例分割方法与基于unet的语义分割方法在病灶计数中的效果相当。此外,训练模型的集合没有显示出比性能最好的模型UNet性能增加,可能是因为错误经常在模型之间共享。性能可能受到这个复杂问题的高质量照片的可用性的限制,而不是所使用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信