Shun Liu, Victoria Powell, Shun-Min Yang, France Lam, Chris Bowler, Miroslav Obornik, Richard G Dorrell
{"title":"Dynamic Relocalization and Divergent Expression of a Major Facilitator Carrier Subfamily in Diatoms.","authors":"Shun Liu, Victoria Powell, Shun-Min Yang, France Lam, Chris Bowler, Miroslav Obornik, Richard G Dorrell","doi":"10.1111/ppl.70355","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic organisms, including microbial members such as protists and green algae, utilize suites of transporter proteins to move essential metabolites across cell organelle membranes. Amongst these different transporter families, the mitochondrial carrier family (MCF) is one of the most diverse, encompassing essential NAD+ and ADP/ATP translocators, as well as amino acid, sugar and cofactor transporters. They are typically associated with the mitochondrial inner membrane, but some display more dynamic localization. Here, we perform a census of predicted MCF domains in the genome of the model diatom alga Phaeodactylum tricornutum, identifying a new family of three proteins (termed here and elsewhere \"MCFc\") with strong internal sequence conservation but limited similarity to other MCF proteins encoded in its genome. Considering both phylogenetic data and experimental localization, we posit that MCFc is widespread across algae with complex red chloroplasts alongside some primary green algae, and contains multiple subfamilies targeted to diatom mitochondria, plastids, and endomembranes. Finally, using data from Tara Oceans, we identify putative roles for MCFc in diatom cells, including a possible association of the plastid-targeted Phatr3_J46742 subfamily in cellular nitrate assimilation. Our data provide insights into the evolutionary diversification of the membrane transport mechanisms associated with diatoms and other eukaryotic algae.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70355"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70355","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic organisms, including microbial members such as protists and green algae, utilize suites of transporter proteins to move essential metabolites across cell organelle membranes. Amongst these different transporter families, the mitochondrial carrier family (MCF) is one of the most diverse, encompassing essential NAD+ and ADP/ATP translocators, as well as amino acid, sugar and cofactor transporters. They are typically associated with the mitochondrial inner membrane, but some display more dynamic localization. Here, we perform a census of predicted MCF domains in the genome of the model diatom alga Phaeodactylum tricornutum, identifying a new family of three proteins (termed here and elsewhere "MCFc") with strong internal sequence conservation but limited similarity to other MCF proteins encoded in its genome. Considering both phylogenetic data and experimental localization, we posit that MCFc is widespread across algae with complex red chloroplasts alongside some primary green algae, and contains multiple subfamilies targeted to diatom mitochondria, plastids, and endomembranes. Finally, using data from Tara Oceans, we identify putative roles for MCFc in diatom cells, including a possible association of the plastid-targeted Phatr3_J46742 subfamily in cellular nitrate assimilation. Our data provide insights into the evolutionary diversification of the membrane transport mechanisms associated with diatoms and other eukaryotic algae.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.