Hao Hong, Xin Lei, Jiangtao Wei, Wenjun Tang, Minjie Ye, Jianwen Sun, Guoqi Zhang, Pasqualina M Sarro, Zewen Liu
{"title":"Investigation on fabrication of silicon nanopores using an electrochemical passivation etch-stop strategy.","authors":"Hao Hong, Xin Lei, Jiangtao Wei, Wenjun Tang, Minjie Ye, Jianwen Sun, Guoqi Zhang, Pasqualina M Sarro, Zewen Liu","doi":"10.1038/s41378-025-00973-9","DOIUrl":null,"url":null,"abstract":"<p><p>The three-step wet etching (TSWE) method has been proven to be a promising technique for fabricating silicon nanopores. Despite its potential, one of the bottlenecks of this method is the precise control of the silicon etching and etch-stop, which results in obtaining a well-defined nanopore size. Herein, we present a novel strategy leveraging electrochemical passivation to achieve accurate control over the silicon etching process. By dynamically controlling the oxide layer growth, rapid and reliable etch-stop was achieved in under 4 s, enabling the controllable fabrication of sub-10 nm silicon nanopores. The thickness of the oxide layer was precisely modulated by adjusting the passivation potential, achieving nanopore size shrinkage with a precision better than 2 nm, which can be further enhanced with more refined potential control. This scalable method significantly enhances the TSWE process, offering an efficient approach for producing small-size silicon nanopores with high precision. Importantly, the precise etching control facilitated by electrochemical passivation holds promise for the cost-effective production of high-density, air-insulated monolithic integrated circuits.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"128"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00973-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The three-step wet etching (TSWE) method has been proven to be a promising technique for fabricating silicon nanopores. Despite its potential, one of the bottlenecks of this method is the precise control of the silicon etching and etch-stop, which results in obtaining a well-defined nanopore size. Herein, we present a novel strategy leveraging electrochemical passivation to achieve accurate control over the silicon etching process. By dynamically controlling the oxide layer growth, rapid and reliable etch-stop was achieved in under 4 s, enabling the controllable fabrication of sub-10 nm silicon nanopores. The thickness of the oxide layer was precisely modulated by adjusting the passivation potential, achieving nanopore size shrinkage with a precision better than 2 nm, which can be further enhanced with more refined potential control. This scalable method significantly enhances the TSWE process, offering an efficient approach for producing small-size silicon nanopores with high precision. Importantly, the precise etching control facilitated by electrochemical passivation holds promise for the cost-effective production of high-density, air-insulated monolithic integrated circuits.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.