Optimization of Side-vented Root Canal Irrigation Needle Design: Aperture Bevel Angle and Configuration Analysis using CFD and Multicriteria Decision Analysis with In Vitro Validation and C-shaped Canal Simulation
Jiayang Gao DDS , Yuhua Dai DDS, MSD , Ziteng Long DDS , Yi Min DDS, PhD , Ya Shen DDS, PhD , Yuan Gao DDS, PhD
{"title":"Optimization of Side-vented Root Canal Irrigation Needle Design: Aperture Bevel Angle and Configuration Analysis using CFD and Multicriteria Decision Analysis with In Vitro Validation and C-shaped Canal Simulation","authors":"Jiayang Gao DDS , Yuhua Dai DDS, MSD , Ziteng Long DDS , Yi Min DDS, PhD , Ya Shen DDS, PhD , Yuan Gao DDS, PhD","doi":"10.1016/j.joen.2025.06.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>This study aimed to enhance the efficacy and safety of root canal irrigation in #25/.06 canals by optimizing side-vented needle designs, focusing on bevel angle adjustments and sealing configurations.</div></div><div><h3>Methods</h3><div>Computational fluid dynamics simulations were performed on modified 30G side-vented needles with varying bevel angles and configurations (solid vs hollow). Metrics analyzed included irrigant exchange distance, apical pressure, wall shear stress and velocity distribution. Statistical regression analysis and the entropy-weighted TOPSIS method were applied to find the optimized needle designs. The optimized needle and the standard needle were placed in a C-shaped canal model for computational fluid dynamic simulations. Modified side-vented root canal irrigation needles were also evaluated <em>in vitro</em> for performance.</div></div><div><h3>Results</h3><div>Solid-bevel needles outperformed hollow-bevel designs, achieving up to a 35% increase in irrigant exchange distance compared to standard needles. Medium bevel angles in solid-bevel needles provided an optimal balance between efficient irrigant exchange and reduced apical pressure. Enlarging the canal dimensions further improved irrigation performance.</div></div><div><h3>Conclusions</h3><div>Optimized solid-bevel needle designs significantly enhance irrigant distribution within root canals, with medium bevel angles demonstrating superior performance. Design modifications, such as enclosing the bevel surface below the aperture, present a promising avenue for improving irrigation efficiency.</div></div>","PeriodicalId":15703,"journal":{"name":"Journal of endodontics","volume":"51 9","pages":"Pages 1285-1293"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endodontics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009923992500370X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
This study aimed to enhance the efficacy and safety of root canal irrigation in #25/.06 canals by optimizing side-vented needle designs, focusing on bevel angle adjustments and sealing configurations.
Methods
Computational fluid dynamics simulations were performed on modified 30G side-vented needles with varying bevel angles and configurations (solid vs hollow). Metrics analyzed included irrigant exchange distance, apical pressure, wall shear stress and velocity distribution. Statistical regression analysis and the entropy-weighted TOPSIS method were applied to find the optimized needle designs. The optimized needle and the standard needle were placed in a C-shaped canal model for computational fluid dynamic simulations. Modified side-vented root canal irrigation needles were also evaluated in vitro for performance.
Results
Solid-bevel needles outperformed hollow-bevel designs, achieving up to a 35% increase in irrigant exchange distance compared to standard needles. Medium bevel angles in solid-bevel needles provided an optimal balance between efficient irrigant exchange and reduced apical pressure. Enlarging the canal dimensions further improved irrigation performance.
Conclusions
Optimized solid-bevel needle designs significantly enhance irrigant distribution within root canals, with medium bevel angles demonstrating superior performance. Design modifications, such as enclosing the bevel surface below the aperture, present a promising avenue for improving irrigation efficiency.
期刊介绍:
The Journal of Endodontics, the official journal of the American Association of Endodontists, publishes scientific articles, case reports and comparison studies evaluating materials and methods of pulp conservation and endodontic treatment. Endodontists and general dentists can learn about new concepts in root canal treatment and the latest advances in techniques and instrumentation in the one journal that helps them keep pace with rapid changes in this field.