Anti-inflammatory and analgesic effects of marine-derived antimicrobial peptide tilapia piscidin 3(TP3) in alleviating chronic constriction injury-induced neuropathic pain in rats
Jui-Kang Tsai , Zong-Sheng Wu , San-Nan Yang , Shi-Ying Huang , Hui-Lu Chen , Wei-Ning Teng , Fu-Wei Su , Wu-Fu Chen , Zhi-Hong Wen , Chun-Sung Sung
{"title":"Anti-inflammatory and analgesic effects of marine-derived antimicrobial peptide tilapia piscidin 3(TP3) in alleviating chronic constriction injury-induced neuropathic pain in rats","authors":"Jui-Kang Tsai , Zong-Sheng Wu , San-Nan Yang , Shi-Ying Huang , Hui-Lu Chen , Wei-Ning Teng , Fu-Wei Su , Wu-Fu Chen , Zhi-Hong Wen , Chun-Sung Sung","doi":"10.1016/j.neuint.2025.106013","DOIUrl":null,"url":null,"abstract":"<div><div>Neuropathic pain has multiple etiologies, and many patients remain inadequately treated. The cyclic adenosine monophosphate (cAMP) signaling pathway plays a critical role in inflammatory responses, particularly through the upregulation of proinflammatory cytokines. This study aimed to investigate the anti-inflammatory and analgesic properties of the marine-derived antimicrobial peptide Tilapia Piscidin 3 (TP3), using a chronic constriction injury (CCI) model to simulate neuropathic pain. In vitro assays showed that TP3 exerted a dose-dependent inhibitory effect on lipopolysaccharide-induced proinflammatory cytokine expression in mouse BV-2 microglia and RAW 264.7 macrophages. Nociceptive behavioral tests revealed that intrathecal (IT) administration of TP3 alleviated CCI-induced mechanical allodynia and thermal hyperalgesia. Immunofluorescence analysis showed that IT TP3 significantly increased phosphodiesterase 4D (PDE4D) levels and decreased the expression of cAMP, brain-derived neurotrophic factor (BDNF), and tumor necrosis factor-α in astrocytes within the dorsal horn of the spinal cord in CCI rats. The antinociceptive effects of TP3 were abolished by the PDE4D inhibitor rolipram, highlighting the role of PDE4D-mediated modulation of the cAMP pathway in producing these effects. These findings suggest that TP3 may be a promising therapeutic agent for treating neuropathic pain by exerting anti-inflammatory and analgesic effects through regulation of the cAMP pathway.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"188 ","pages":"Article 106013"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000865","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuropathic pain has multiple etiologies, and many patients remain inadequately treated. The cyclic adenosine monophosphate (cAMP) signaling pathway plays a critical role in inflammatory responses, particularly through the upregulation of proinflammatory cytokines. This study aimed to investigate the anti-inflammatory and analgesic properties of the marine-derived antimicrobial peptide Tilapia Piscidin 3 (TP3), using a chronic constriction injury (CCI) model to simulate neuropathic pain. In vitro assays showed that TP3 exerted a dose-dependent inhibitory effect on lipopolysaccharide-induced proinflammatory cytokine expression in mouse BV-2 microglia and RAW 264.7 macrophages. Nociceptive behavioral tests revealed that intrathecal (IT) administration of TP3 alleviated CCI-induced mechanical allodynia and thermal hyperalgesia. Immunofluorescence analysis showed that IT TP3 significantly increased phosphodiesterase 4D (PDE4D) levels and decreased the expression of cAMP, brain-derived neurotrophic factor (BDNF), and tumor necrosis factor-α in astrocytes within the dorsal horn of the spinal cord in CCI rats. The antinociceptive effects of TP3 were abolished by the PDE4D inhibitor rolipram, highlighting the role of PDE4D-mediated modulation of the cAMP pathway in producing these effects. These findings suggest that TP3 may be a promising therapeutic agent for treating neuropathic pain by exerting anti-inflammatory and analgesic effects through regulation of the cAMP pathway.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.