Advancements and challenges in using AI for biomarker detection in early Alzheimer’s disease

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Iman Beheshti , Benedict C. Albensi , Alex Freitas , Taravat Ghafourian
{"title":"Advancements and challenges in using AI for biomarker detection in early Alzheimer’s disease","authors":"Iman Beheshti ,&nbsp;Benedict C. Albensi ,&nbsp;Alex Freitas ,&nbsp;Taravat Ghafourian","doi":"10.1016/j.drudis.2025.104415","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth in Alzheimer’s disease (AD) research has led to an unprecedented accumulation of biomedical and clinical data, including longitudinal patient datasets and comprehensive observational cohort databases comprising clinical, biomedical, neuroimaging and lifestyle data. Expert use of machine learning algorithms is indispensable in order to realize the full potential of the data for diagnosis and drug target discovery. Here, we provide an overview of the biomedical and neuroimaging measures for AD diagnosis and staging. We then critically review the application of machine learning (classification) methods to AD data and provide insight for future improvements and research directions. Future research should aim to improve interpretability, accessibility and thorough validation of the models, enabling translation into clinical applications.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 7","pages":"Article 104415"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964462500128X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth in Alzheimer’s disease (AD) research has led to an unprecedented accumulation of biomedical and clinical data, including longitudinal patient datasets and comprehensive observational cohort databases comprising clinical, biomedical, neuroimaging and lifestyle data. Expert use of machine learning algorithms is indispensable in order to realize the full potential of the data for diagnosis and drug target discovery. Here, we provide an overview of the biomedical and neuroimaging measures for AD diagnosis and staging. We then critically review the application of machine learning (classification) methods to AD data and provide insight for future improvements and research directions. Future research should aim to improve interpretability, accessibility and thorough validation of the models, enabling translation into clinical applications.

Abstract Image

人工智能用于早期阿尔茨海默病生物标志物检测的进展和挑战。
阿尔茨海默病(AD)研究的快速增长导致了前所未有的生物医学和临床数据的积累,包括纵向患者数据集和包括临床、生物医学、神经影像学和生活方式数据的综合观察队列数据库。为了充分发挥数据在诊断和药物靶点发现方面的潜力,专家使用机器学习算法是必不可少的。在这里,我们提供的生物医学和神经影像学措施的AD诊断和分期的概述。然后,我们批判性地回顾了机器学习(分类)方法在AD数据中的应用,并为未来的改进和研究方向提供了见解。未来的研究应致力于提高模型的可解释性、可及性和彻底的验证,使其能够转化为临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信