Thermal Management Performances of Low Environmental-Impact Metallocene-Catalyzed Poly-α-Olefin (mPAO) Liquid for High-Power-Density Applications

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Yuchen Li, Derya Baran, Dachang Du, Dongchu Wei, Xiaojing Lu, Hanying Li, Wee-Liat Ong
{"title":"Thermal Management Performances of Low Environmental-Impact Metallocene-Catalyzed Poly-α-Olefin (mPAO) Liquid for High-Power-Density Applications","authors":"Yuchen Li,&nbsp;Derya Baran,&nbsp;Dachang Du,&nbsp;Dongchu Wei,&nbsp;Xiaojing Lu,&nbsp;Hanying Li,&nbsp;Wee-Liat Ong","doi":"10.1002/adsu.202500015","DOIUrl":null,"url":null,"abstract":"<p>Direct-contact liquid cooling has emerged as one of the most effective thermal management techniques for high-power-density applications. In this study, key physical properties, including density, viscosity, heat capacity, and thermal conductivity are experimentally measured and simulated for three different metallocene-catalyzed poly-α-olefin (mPAO) with different branch lengths and numbers. The results indicate minimal differences in density, heat capacity, and thermal conductivity, but a significant change in the viscosity, with longer and more branched molecules exhibiting higher viscosity. A comparative analysis with common coolants highlights mPAO's superior heat transfer and environmental attributes, positioning it as a competitive environmentally friendly coolant. Using molecular dynamics simulations, mPAO's convective heat transfer behavior of mPAOs in nanochannels is examined to discover enhanced convective heat transfer with increased wall-liquid atomic interactions and reduced liquid inter-molecular interactions. These enhancements arise from the denser atomic arrangement in the liquid and closer proximity to the wall. The results indicate that for forced convection under laminar flow in smooth-walled nanochannels, the Nusselt number depends only on the normalized Kapitza length. It is independent of wall and liquid materials.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct-contact liquid cooling has emerged as one of the most effective thermal management techniques for high-power-density applications. In this study, key physical properties, including density, viscosity, heat capacity, and thermal conductivity are experimentally measured and simulated for three different metallocene-catalyzed poly-α-olefin (mPAO) with different branch lengths and numbers. The results indicate minimal differences in density, heat capacity, and thermal conductivity, but a significant change in the viscosity, with longer and more branched molecules exhibiting higher viscosity. A comparative analysis with common coolants highlights mPAO's superior heat transfer and environmental attributes, positioning it as a competitive environmentally friendly coolant. Using molecular dynamics simulations, mPAO's convective heat transfer behavior of mPAOs in nanochannels is examined to discover enhanced convective heat transfer with increased wall-liquid atomic interactions and reduced liquid inter-molecular interactions. These enhancements arise from the denser atomic arrangement in the liquid and closer proximity to the wall. The results indicate that for forced convection under laminar flow in smooth-walled nanochannels, the Nusselt number depends only on the normalized Kapitza length. It is independent of wall and liquid materials.

低环境影响茂金属催化的高功率密度聚α-烯烃(mPAO)液体的热管理性能
直接接触液体冷却已经成为高功率密度应用中最有效的热管理技术之一。在本研究中,实验测量和模拟了三种不同分支长度和数目的茂金属催化聚α-烯烃(mPAO)的密度、粘度、热容量和导热系数等关键物理性质。结果表明,密度、热容和导热系数的差异很小,但粘度有显著变化,更长、更多的支链分子表现出更高的粘度。与普通冷却剂的比较分析突出了mPAO优越的传热和环保特性,将其定位为具有竞争力的环保冷却剂。通过分子动力学模拟,研究了纳米通道中mPAOs的对流换热行为,发现壁面-液体原子相互作用增加,液体分子间相互作用减少,对流换热增强。这些增强是由于液体中更密集的原子排列和更接近壁。结果表明:对于光滑壁纳米通道层流条件下的强制对流,努塞尔数仅依赖于归一化Kapitza长度。它不受壁材和液体材料的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信