A PCA and Mesh Adaptation-Based Format for High Compression of Earth Observation Optical Data With Applications in Agriculture

IF 2.9 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Luca Liverotti, Nicola Ferro, Matteo Matteucci, Simona Perotto
{"title":"A PCA and Mesh Adaptation-Based Format for High Compression of Earth Observation Optical Data With Applications in Agriculture","authors":"Luca Liverotti,&nbsp;Nicola Ferro,&nbsp;Matteo Matteucci,&nbsp;Simona Perotto","doi":"10.1002/nme.70064","DOIUrl":null,"url":null,"abstract":"<p>Earth Observation optical data are critical for agriculture, supporting tasks like vegetation health monitoring, crop classification, and land use analysis. However, the large size of multispectral and hyperspectral datasets poses challenges for storage, transmission, and processing, particularly in precision farming and resource-limited contexts. This work presents the H<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^2 $$</annotation>\n </semantics></math>-PCA-AT (Hilbert and Huffman-encoded Principal Component Analysis-Adaptive Triangular) format, a novel lossy compression framework that combines PCA for spectral reduction with anisotropic mesh adaptation for spatial compression. Adaptive triangular meshes capture image features with fewer elements with respect to a standard pixel grid, while efficient encoding with Hilbert curves and Huffman coding ensures compact storage. Numerical evaluations of data reconstruction, vegetation index computation, and land cover classification demonstrate the effectiveness of the H<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^2 $$</annotation>\n </semantics></math>-PCA-AT format, achieving superior compression compared to JPEG while preserving essential agricultural insights.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70064","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Earth Observation optical data are critical for agriculture, supporting tasks like vegetation health monitoring, crop classification, and land use analysis. However, the large size of multispectral and hyperspectral datasets poses challenges for storage, transmission, and processing, particularly in precision farming and resource-limited contexts. This work presents the H 2 $$ {}^2 $$ -PCA-AT (Hilbert and Huffman-encoded Principal Component Analysis-Adaptive Triangular) format, a novel lossy compression framework that combines PCA for spectral reduction with anisotropic mesh adaptation for spatial compression. Adaptive triangular meshes capture image features with fewer elements with respect to a standard pixel grid, while efficient encoding with Hilbert curves and Huffman coding ensures compact storage. Numerical evaluations of data reconstruction, vegetation index computation, and land cover classification demonstrate the effectiveness of the H 2 $$ {}^2 $$ -PCA-AT format, achieving superior compression compared to JPEG while preserving essential agricultural insights.

Abstract Image

基于PCA和网格自适应的对地观测光学数据高压缩格式及其在农业中的应用
地球观测光学数据对农业至关重要,支持诸如植被健康监测、作物分类和土地利用分析等任务。然而,多光谱和高光谱数据集的庞大规模给存储、传输和处理带来了挑战,特别是在精准农业和资源有限的情况下。这项工作提出了h2 $$ {}^2 $$ -PCA-AT(希尔伯特和霍夫曼编码的主成分分析-自适应三角)格式,一种新的有损压缩框架,将PCA用于频谱还原和各向异性网格自适应用于空间压缩。自适应三角形网格相对于标准像素网格以较少的元素捕获图像特征,而希尔伯特曲线和霍夫曼编码的高效编码确保了紧凑的存储。数据重建、植被指数计算和土地覆盖分类的数值评价证明了h2 $$ {}^2 $$ -PCA-AT格式的有效性。与JPEG相比,实现了更好的压缩,同时保留了基本的农业见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信