Effects of Total Suspended Solids on Photomineralization of Dissolved Organic Matter in the Peace-Athabasca Delta, Canada

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
W. Dolan, T. M. Pavelsky, J. Davis, N. LaFramboise, C. A. Polik, R. M. Cory
{"title":"Effects of Total Suspended Solids on Photomineralization of Dissolved Organic Matter in the Peace-Athabasca Delta, Canada","authors":"W. Dolan,&nbsp;T. M. Pavelsky,&nbsp;J. Davis,&nbsp;N. LaFramboise,&nbsp;C. A. Polik,&nbsp;R. M. Cory","doi":"10.1029/2024JG008620","DOIUrl":null,"url":null,"abstract":"<p>Northern deltas receive chromophoric dissolved organic matter (CDOM) from their watersheds, which can be oxidized to carbon dioxide upon absorption of sunlight (i.e., photomineralized). These deltas also receive total suspended solids (TSS), which may shade sunlight absorption by CDOM, thus limiting photomineralization. To quantify this interaction for the first time, we measured photomineralization rates at 11 sites in the Peace-Athabasca Delta (PAD), Canada. We sampled waters during a July 2022 field campaign for TSS concentration, CDOM concentration (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n <mrow>\n <mtext>CDOM</mtext>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${a}_{\\text{CDOM},\\lambda }$</annotation>\n </semantics></math>), total downwelling sunlight attenuation coefficients (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mtext>tot</mtext>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{d,\\text{tot},\\lambda }$</annotation>\n </semantics></math>), and light attenuation coefficients due to CDOM (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mtext>CDOM</mtext>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{d,\\text{CDOM},\\lambda }$</annotation>\n </semantics></math>). TSS ranged from &lt;1 to 112 mg/L with an average of 19 ± 34 mg/L (mean ± one standard deviation), an order of magnitude lower than TSS reported in rivers entering the PAD earlier in the open water season. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n <mrow>\n <mtext>CDOM</mtext>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${a}_{\\text{CDOM},\\lambda }$</annotation>\n </semantics></math> at 305 nm (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n <mrow>\n <mtext>CDOM</mtext>\n <mo>,</mo>\n <mn>305</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${a}_{\\text{CDOM},305}$</annotation>\n </semantics></math>) ranged from 23.3 to 65.2 m<sup>−1</sup>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mtext>CDOM</mtext>\n <mo>,</mo>\n <mn>305</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{d,\\text{CDOM},305}$</annotation>\n </semantics></math> ranged from 26.3 to 74.1 m<sup>−1</sup>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mtext>tot</mtext>\n <mo>,</mo>\n <mn>305</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{d,\\text{tot},305}$</annotation>\n </semantics></math> ranged from 19.0 to 63.7 m<sup>−1</sup>. The ratio of sunlight absorbed by CDOM relative to total sunlight attenuation (<span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mtext>CDOM</mtext>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mtext>,tot</mtext>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </msub>\n </mrow>\n </mfrac>\n </mrow>\n <annotation> $\\frac{{K}_{d,\\text{CDOM},\\lambda }}{{K}_{\\mathit{d}\\text{,tot},\\lambda }}$</annotation>\n </semantics></math>) was inversely correlated with TSS concentration across all wavelengths measured (305–412 nm). TSS thus limited photomineralization rates by shading CDOM from ultraviolet A and visible wavelengths of sunlight, reducing photomineralization rates by up to 56% compared to rates in the absence of TSS or other non-CDOM particles that attenuate sunlight. Results suggest that shifts in delta hydrology that affect TSS concentration likely influence photomineralization rates within TSS-rich northern deltas.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008620","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Northern deltas receive chromophoric dissolved organic matter (CDOM) from their watersheds, which can be oxidized to carbon dioxide upon absorption of sunlight (i.e., photomineralized). These deltas also receive total suspended solids (TSS), which may shade sunlight absorption by CDOM, thus limiting photomineralization. To quantify this interaction for the first time, we measured photomineralization rates at 11 sites in the Peace-Athabasca Delta (PAD), Canada. We sampled waters during a July 2022 field campaign for TSS concentration, CDOM concentration ( a CDOM , λ ${a}_{\text{CDOM},\lambda }$ ), total downwelling sunlight attenuation coefficients ( K d , tot , λ ${K}_{d,\text{tot},\lambda }$ ), and light attenuation coefficients due to CDOM ( K d , CDOM , λ ${K}_{d,\text{CDOM},\lambda }$ ). TSS ranged from <1 to 112 mg/L with an average of 19 ± 34 mg/L (mean ± one standard deviation), an order of magnitude lower than TSS reported in rivers entering the PAD earlier in the open water season. a CDOM , λ ${a}_{\text{CDOM},\lambda }$ at 305 nm ( a CDOM , 305 ${a}_{\text{CDOM},305}$ ) ranged from 23.3 to 65.2 m−1, K d , CDOM , 305 ${K}_{d,\text{CDOM},305}$ ranged from 26.3 to 74.1 m−1, and K d , tot , 305 ${K}_{d,\text{tot},305}$ ranged from 19.0 to 63.7 m−1. The ratio of sunlight absorbed by CDOM relative to total sunlight attenuation ( K d , CDOM , λ K d ,tot , λ $\frac{{K}_{d,\text{CDOM},\lambda }}{{K}_{\mathit{d}\text{,tot},\lambda }}$ ) was inversely correlated with TSS concentration across all wavelengths measured (305–412 nm). TSS thus limited photomineralization rates by shading CDOM from ultraviolet A and visible wavelengths of sunlight, reducing photomineralization rates by up to 56% compared to rates in the absence of TSS or other non-CDOM particles that attenuate sunlight. Results suggest that shifts in delta hydrology that affect TSS concentration likely influence photomineralization rates within TSS-rich northern deltas.

总悬浮固体对加拿大和平-阿萨巴斯卡三角洲溶解有机质光矿化的影响
北部三角洲从其流域吸收可发色的溶解有机物(CDOM),这些有机物在吸收阳光后可被氧化为二氧化碳(即光矿化)。这些三角洲也接受总悬浮固体(TSS),这可能会遮蔽CDOM对阳光的吸收,从而限制了光矿化。为了首次量化这种相互作用,我们测量了加拿大和平-阿萨巴斯卡三角洲(PAD) 11个地点的光电矿化率。我们在2022年7月的实地活动中采样了TSS浓度,CDOM浓度(a CDOM, λ ${a}_{\text{CDOM},\lambda }$),总下沉太阳光衰减系数(kd, tot, λ ${K}_{d,\text{tot},\lambda }$);和CDOM的光衰减系数(K d, CDOM, λ ${K}_{d,\text{CDOM},\lambda }$)。TSS范围为1 ~ 112 mg/L,平均值为19±34 mg/L(平均值±一个标准差),比开放水域季节较早进入PAD的河流报告的TSS低一个数量级。a CDOM, λ ${a}_{\text{CDOM},\lambda }$在305nm (a CDOM,305 ${a}_{\text{CDOM},305}$)范围从23.3到65.2 m−1,K d, CDOM,305 ${K}_{d,\text{CDOM},305}$范围为26.3 ~ 74.1 m−1,kd, tot,305 ${K}_{d,\text{tot},305}$范围从19.0到63.7 m−1。CDOM吸收的太阳光与总太阳光衰减的比值(K d, CDOM,λ kd,t,λ $\frac{{K}_{d,\text{CDOM},\lambda }}{{K}_{\mathit{d}\text{,tot},\lambda }}$)与测量的所有波长(305-412 nm)的TSS浓度呈负相关。因此,TSS通过遮挡CDOM免受紫外线A和可见波长的阳光照射,从而限制了光电矿化率,将光电矿化率降低了56%% compared to rates in the absence of TSS or other non-CDOM particles that attenuate sunlight. Results suggest that shifts in delta hydrology that affect TSS concentration likely influence photomineralization rates within TSS-rich northern deltas.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信