Jie Huang, Zhiyin Huang, Junda Chen, Ruiming Zhang, Manrou Huang, Yuxin Liu, Lixin Xing, Siyu Ye, Lei Du
{"title":"Surface Reconstruction in Precious and Non-Precious Metal-Based Electrocatalysts for Oxygen Evolution Reaction: A pH-Dependent Perspective","authors":"Jie Huang, Zhiyin Huang, Junda Chen, Ruiming Zhang, Manrou Huang, Yuxin Liu, Lixin Xing, Siyu Ye, Lei Du","doi":"10.1002/adsu.202500047","DOIUrl":null,"url":null,"abstract":"<p>Extracting hydrogen by electrochemical water splitting is the most important pathway for green hydrogen production at present whereas the corresponding anodic oxygen evolution reaction (OER) catalysts usually suffer from harsh high-potential conditions, either acidic or alkaline, leading to performance degradation and surface reconstruction. Importantly, the surface reconstruction upon some catalysts may lead to a misinterpretation of the true active centers, thereby impeding the rational design of catalysts. Consequently, understanding the dynamic evolution of catalyst surface reconstruction during OER is essential. This paper reviews the recent research progress on the surface reconstruction of both precious-metal and non-precious-metal catalysts across wide pH, i.e., under acidic and alkaline conditions, and highlights the differences between them. In addition, an analysis of the underlying causes for catalyst surface reconstruction and the impact factors that greatly influence these processes are presented. Finally, based on these discussions, perspectives for the rational design of OER catalysts are proposed.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting hydrogen by electrochemical water splitting is the most important pathway for green hydrogen production at present whereas the corresponding anodic oxygen evolution reaction (OER) catalysts usually suffer from harsh high-potential conditions, either acidic or alkaline, leading to performance degradation and surface reconstruction. Importantly, the surface reconstruction upon some catalysts may lead to a misinterpretation of the true active centers, thereby impeding the rational design of catalysts. Consequently, understanding the dynamic evolution of catalyst surface reconstruction during OER is essential. This paper reviews the recent research progress on the surface reconstruction of both precious-metal and non-precious-metal catalysts across wide pH, i.e., under acidic and alkaline conditions, and highlights the differences between them. In addition, an analysis of the underlying causes for catalyst surface reconstruction and the impact factors that greatly influence these processes are presented. Finally, based on these discussions, perspectives for the rational design of OER catalysts are proposed.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.