Surface Reconstruction in Precious and Non-Precious Metal-Based Electrocatalysts for Oxygen Evolution Reaction: A pH-Dependent Perspective

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Jie Huang, Zhiyin Huang, Junda Chen, Ruiming Zhang, Manrou Huang, Yuxin Liu, Lixin Xing, Siyu Ye, Lei Du
{"title":"Surface Reconstruction in Precious and Non-Precious Metal-Based Electrocatalysts for Oxygen Evolution Reaction: A pH-Dependent Perspective","authors":"Jie Huang,&nbsp;Zhiyin Huang,&nbsp;Junda Chen,&nbsp;Ruiming Zhang,&nbsp;Manrou Huang,&nbsp;Yuxin Liu,&nbsp;Lixin Xing,&nbsp;Siyu Ye,&nbsp;Lei Du","doi":"10.1002/adsu.202500047","DOIUrl":null,"url":null,"abstract":"<p>Extracting hydrogen by electrochemical water splitting is the most important pathway for green hydrogen production at present whereas the corresponding anodic oxygen evolution reaction (OER) catalysts usually suffer from harsh high-potential conditions, either acidic or alkaline, leading to performance degradation and surface reconstruction. Importantly, the surface reconstruction upon some catalysts may lead to a misinterpretation of the true active centers, thereby impeding the rational design of catalysts. Consequently, understanding the dynamic evolution of catalyst surface reconstruction during OER is essential. This paper reviews the recent research progress on the surface reconstruction of both precious-metal and non-precious-metal catalysts across wide pH, i.e., under acidic and alkaline conditions, and highlights the differences between them. In addition, an analysis of the underlying causes for catalyst surface reconstruction and the impact factors that greatly influence these processes are presented. Finally, based on these discussions, perspectives for the rational design of OER catalysts are proposed.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting hydrogen by electrochemical water splitting is the most important pathway for green hydrogen production at present whereas the corresponding anodic oxygen evolution reaction (OER) catalysts usually suffer from harsh high-potential conditions, either acidic or alkaline, leading to performance degradation and surface reconstruction. Importantly, the surface reconstruction upon some catalysts may lead to a misinterpretation of the true active centers, thereby impeding the rational design of catalysts. Consequently, understanding the dynamic evolution of catalyst surface reconstruction during OER is essential. This paper reviews the recent research progress on the surface reconstruction of both precious-metal and non-precious-metal catalysts across wide pH, i.e., under acidic and alkaline conditions, and highlights the differences between them. In addition, an analysis of the underlying causes for catalyst surface reconstruction and the impact factors that greatly influence these processes are presented. Finally, based on these discussions, perspectives for the rational design of OER catalysts are proposed.

基于贵金属和非贵金属的析氧电催化剂的表面重构:一个ph依赖的观点
电化学水裂解提氢是目前绿色制氢最重要的途径,而相应的阳极析氧反应(OER)催化剂通常受到恶劣的高电位条件(酸性或碱性)的影响,导致其性能下降和表面重构。重要的是,某些催化剂的表面重构可能导致对真实活性中心的误解,从而阻碍催化剂的合理设计。因此,了解OER过程中催化剂表面重构的动态演变是必不可少的。本文综述了近年来贵金属和非贵金属催化剂在宽pH(即酸性和碱性)条件下的表面重构研究进展,并强调了它们之间的差异。此外,还分析了催化剂表面重构的根本原因以及影响这些过程的影响因素。最后,在此基础上对OER催化剂的合理设计提出了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信