Ni Foam Supported Pd-Doped Zinc Spinel Oxide Nano-Electrocatalyst for Efficient Hydrogen Production Supported by DFT Study as Well Validated With Experimental Data
IF 6.5 3区 材料科学Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Refah S. Alkhaldi, Mubarak A. Abdulwahab, Mohammed A. Gondal, Mohamed Jaffer Sadiq Mohamed, Munirah A. Almessiere, Abdulhadi Baykal, Abduljabar Alsayoud
{"title":"Ni Foam Supported Pd-Doped Zinc Spinel Oxide Nano-Electrocatalyst for Efficient Hydrogen Production Supported by DFT Study as Well Validated With Experimental Data","authors":"Refah S. Alkhaldi, Mubarak A. Abdulwahab, Mohammed A. Gondal, Mohamed Jaffer Sadiq Mohamed, Munirah A. Almessiere, Abdulhadi Baykal, Abduljabar Alsayoud","doi":"10.1002/adsu.202500142","DOIUrl":null,"url":null,"abstract":"<p>An innovative palladium-doped zinc cobalt oxide nanoelectrocatalyst, ZnPd<sub>x</sub>Co<sub>2-x</sub>O<sub>4</sub> (0.00 ≤ x ≤ 0.08)@NF, is successfully synthesized using a hydrothermal method. The resulting material exhibits a spinel oxide phase, as confirmed by X-ray diffraction (XRD). The electrocatalytic performance of ZnPd<sub>x</sub>Co<sub>2-x</sub>O<sub>4</sub> (0.00 ≤ x ≤ 0.08)@NF is evaluated for the hydrogen evolution reaction (HER). The results show significant improvements in efficient hydrogen production, with an overpotential of 31 mV, a Tafel slope of 54.36 mV dec⁻<sup>1</sup>, and sustained stability for over 72 h, using chronopotentiometry methods. Doping with 8.0% Pd concentration enhances the highest electrochemical performance of the nanoelectrocatalyst, supporting the idea that Pd doping improves HER activity. The results suggest that the increased electrochemical active surface area (ECSA) and faster charge transfer kinetics at the interface between the semiconductor and electrolyte contribute to enhanced performance. The DFT calculations performed in this work confirm the role of Pd in improving the catalytic activity of the ZnCo<sub>2</sub>O<sub>4</sub> spinel catalyst. Overall, this study has made a significant contribution to the development of sustainable energy solutions, offering a promising path toward the efficient production of hydrogen fuel.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 6","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202500142","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative palladium-doped zinc cobalt oxide nanoelectrocatalyst, ZnPdxCo2-xO4 (0.00 ≤ x ≤ 0.08)@NF, is successfully synthesized using a hydrothermal method. The resulting material exhibits a spinel oxide phase, as confirmed by X-ray diffraction (XRD). The electrocatalytic performance of ZnPdxCo2-xO4 (0.00 ≤ x ≤ 0.08)@NF is evaluated for the hydrogen evolution reaction (HER). The results show significant improvements in efficient hydrogen production, with an overpotential of 31 mV, a Tafel slope of 54.36 mV dec⁻1, and sustained stability for over 72 h, using chronopotentiometry methods. Doping with 8.0% Pd concentration enhances the highest electrochemical performance of the nanoelectrocatalyst, supporting the idea that Pd doping improves HER activity. The results suggest that the increased electrochemical active surface area (ECSA) and faster charge transfer kinetics at the interface between the semiconductor and electrolyte contribute to enhanced performance. The DFT calculations performed in this work confirm the role of Pd in improving the catalytic activity of the ZnCo2O4 spinel catalyst. Overall, this study has made a significant contribution to the development of sustainable energy solutions, offering a promising path toward the efficient production of hydrogen fuel.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.