Morphologically engineered S-InxZny bimetallic catalysts via an ionothermal approach for enhanced carbon dioxide electroreduction to formate†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaoyu Chen, Jie Liu, Shuoshuo Feng, Yanhong Zou, Kai Wu, Fanghua Ning, Jin Yi and Yuyu Liu
{"title":"Morphologically engineered S-InxZny bimetallic catalysts via an ionothermal approach for enhanced carbon dioxide electroreduction to formate†","authors":"Xiaoyu Chen, Jie Liu, Shuoshuo Feng, Yanhong Zou, Kai Wu, Fanghua Ning, Jin Yi and Yuyu Liu","doi":"10.1039/D5SE00596E","DOIUrl":null,"url":null,"abstract":"<p >The conversion of carbon dioxide through electrochemical reduction (ECO<small><sub>2</sub></small>RR) offers a promising pathway for sustainable carbon cycling, yet the development of efficient catalysts remains challenged by the trade-off between activity and stability. Herein, we report a sulfur-modulated In–Zn bimetallic sulfide catalyst (S-In<small><sub>0.5</sub></small>Zn<small><sub>1</sub></small>) that achieves highly selective CO<small><sub>2</sub></small>-to-formate conversion <em>via</em> morphological engineering. The optimized catalyst demonstrates exceptional performance with a maximum formate faradaic efficiency (FE) of 95.2% at −1.36 V <em>vs.</em> RHE, coupled with outstanding long-term stability exceeding 80 hours. Systematic investigations reveal that Zn incorporation induces a microstructural reconstruction, forming a hierarchical nanoparticle-lamellar composite architecture. This unique morphology significantly enhances the specific surface area and establishes efficient mass transport pathways, effectively mitigating diffusion limitations for both CO<small><sub>2</sub></small> reactants and critical *OCHO intermediates during electrocatalysis. The resultant reduction in kinetic barriers substantially improves the conversion efficiency of formate production. The findings not only introduce a metal sulfide catalyst system combining high activity and stability for ECO<small><sub>2</sub></small>RR but also provide fundamental structural insights for the rational design of advanced CO<small><sub>2</sub></small> conversion electrocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 13","pages":" 3677-3685"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00596e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of carbon dioxide through electrochemical reduction (ECO2RR) offers a promising pathway for sustainable carbon cycling, yet the development of efficient catalysts remains challenged by the trade-off between activity and stability. Herein, we report a sulfur-modulated In–Zn bimetallic sulfide catalyst (S-In0.5Zn1) that achieves highly selective CO2-to-formate conversion via morphological engineering. The optimized catalyst demonstrates exceptional performance with a maximum formate faradaic efficiency (FE) of 95.2% at −1.36 V vs. RHE, coupled with outstanding long-term stability exceeding 80 hours. Systematic investigations reveal that Zn incorporation induces a microstructural reconstruction, forming a hierarchical nanoparticle-lamellar composite architecture. This unique morphology significantly enhances the specific surface area and establishes efficient mass transport pathways, effectively mitigating diffusion limitations for both CO2 reactants and critical *OCHO intermediates during electrocatalysis. The resultant reduction in kinetic barriers substantially improves the conversion efficiency of formate production. The findings not only introduce a metal sulfide catalyst system combining high activity and stability for ECO2RR but also provide fundamental structural insights for the rational design of advanced CO2 conversion electrocatalysts.

Abstract Image

通过离子热方法对S-InxZny双金属催化剂进行形貌工程,以增强二氧化碳电还原生成甲酸†
通过电化学还原(ECO2RR)将二氧化碳转化为可持续的碳循环提供了一条有希望的途径,但高效催化剂的开发仍然受到活性和稳定性之间权衡的挑战。在此,我们报道了一种硫调制In-Zn双金属硫化物催化剂(S-In0.5Zn1),该催化剂通过形态工程实现了高选择性的co2到甲酸酯的转化。优化后的催化剂表现出优异的性能,在−1.36 V时,甲酸法拉第效率(FE)达到95.2%,并且具有超过80小时的长期稳定性。系统的研究表明,锌的掺入引起了微观结构的重建,形成了层次化的纳米颗粒-层状复合结构。这种独特的形态显著提高了比表面积,建立了有效的质量传递途径,有效地减轻了电催化过程中CO2反应物和关键OCHO中间体的扩散限制。由此产生的动力学障碍的降低大大提高了甲酸酯生产的转化效率。这一发现不仅为ECO2RR提供了一种高活性和稳定性的金属硫化物催化剂体系,而且为合理设计先进的CO2转化电催化剂提供了基本的结构见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信