DisenStyler: Text-driven fast image stylization using content disentanglement and style adaptive matching

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Huilin Liu, Qiong Fang, Caiping Xiang, Gaoming Yang
{"title":"DisenStyler: Text-driven fast image stylization using content disentanglement and style adaptive matching","authors":"Huilin Liu,&nbsp;Qiong Fang,&nbsp;Caiping Xiang,&nbsp;Gaoming Yang","doi":"10.1016/j.cag.2025.104275","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of the CLIP(Contrastive Language-Image Pre-Training) model has drawn widespread attention to text-driven image style transfer. However, existing methods are prone to content distortion when generating images and the transfer process is time-consuming. In this paper, we present DisenStyler, a novel Text-Driven Fast Image Stylization using Content Disentanglement and Style Adaptive Matching. The Global-Local Feature Disentanglement and Fusion (GLFDF) to fuse the content features extracted from the frequency and the spatial, enabling the detail information of the generated images can be well preserved. Furthermore, the Style Adaptive Matching Module (SAMM) is designed to map text features into the image space and conduct style adaptive matching by utilizing the means and variances of text and images. This not only significantly improves the speed of style transfer but also optimizes the local stylization effect of the generated images. Qualitative and quantitative experimental results show that the DisenStyler can better balance the content and style of the generated images while achieving fast image stylization.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"130 ","pages":"Article 104275"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325001165","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of the CLIP(Contrastive Language-Image Pre-Training) model has drawn widespread attention to text-driven image style transfer. However, existing methods are prone to content distortion when generating images and the transfer process is time-consuming. In this paper, we present DisenStyler, a novel Text-Driven Fast Image Stylization using Content Disentanglement and Style Adaptive Matching. The Global-Local Feature Disentanglement and Fusion (GLFDF) to fuse the content features extracted from the frequency and the spatial, enabling the detail information of the generated images can be well preserved. Furthermore, the Style Adaptive Matching Module (SAMM) is designed to map text features into the image space and conduct style adaptive matching by utilizing the means and variances of text and images. This not only significantly improves the speed of style transfer but also optimizes the local stylization effect of the generated images. Qualitative and quantitative experimental results show that the DisenStyler can better balance the content and style of the generated images while achieving fast image stylization.

Abstract Image

DisenStyler:使用内容分解和样式自适应匹配的文本驱动的快速图像样式化
CLIP(对比语言-图像预训练)模型的出现引起了人们对文本驱动的图像风格迁移的广泛关注。然而,现有的方法在生成图像时容易产生内容失真,传输过程耗时长。在本文中,我们提出了DisenStyler,一种新的文本驱动的快速图像样式化方法,使用内容解纠缠和样式自适应匹配。Global-Local Feature Disentanglement and Fusion (GLFDF)将从频率和空间中提取的内容特征融合在一起,使生成的图像能够很好地保留细节信息。设计风格自适应匹配模块(SAMM),将文本特征映射到图像空间中,利用文本和图像的均值和方差进行风格自适应匹配。这不仅显著提高了风格传递的速度,而且优化了生成图像的局部风格化效果。定性和定量实验结果表明,DisenStyler能够更好地平衡生成图像的内容和风格,同时实现快速的图像风格化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信