Control of electrolyte intrusion in carbon-free silver gas diffusion electrodes for electrochemical CO2 reduction

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Inga Dorner , Jens Osiewacz , Philipp Röse , Barbara Ellendorff , Maximilian Röhe , Thomas Turek , Ulrike Krewer
{"title":"Control of electrolyte intrusion in carbon-free silver gas diffusion electrodes for electrochemical CO2 reduction","authors":"Inga Dorner ,&nbsp;Jens Osiewacz ,&nbsp;Philipp Röse ,&nbsp;Barbara Ellendorff ,&nbsp;Maximilian Röhe ,&nbsp;Thomas Turek ,&nbsp;Ulrike Krewer","doi":"10.1016/j.jcou.2025.103163","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving high conversion rates in electrochemical CO<sub>2</sub> reduction requires gas diffusion electrodes to ensure sufficient CO<sub>2</sub> availability at the electrode surface. Carbon-free Ag electrodes offer superior stability compared to carbon-based ones but are challenged by complex electrolyte intrusion and distribution. This study combines experimental variations in electrode design and operating parameters with modeling to identify key factors for high Faradaic efficiency towards CO and high current densities. Results emphasize the importance of an optimal gas/liquid interface. Increasing gas-side overpressure from 60 to 100 mbar doubled the Faradaic efficiency for CO from 20 % to 42 % at 200 mA cm<sup>−2</sup> due to higher local CO<sub>2</sub> concentrations in electrolyte-flooded regions. Thin electrodes of 200 µm outperformed thicker ones up to 390 µm, achieving higher efficiencies by enhancing CO<sub>2</sub> and electrolyte transport, which lowered local pH levels. Optimizing PTFE content further improved performance; reducing PTFE from 2 to 1 wt% increased Faradaic efficiency by 20 % at 200 mA cm<sup>−2</sup> by balancing hydrophobicity and active surface exposure. These insights into the relationship between electrode properties, operating conditions, and gas-liquid distribution advance the design of gas diffusion electrodes for competitive CO<sub>2</sub> reduction applications.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"99 ","pages":"Article 103163"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025001477","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high conversion rates in electrochemical CO2 reduction requires gas diffusion electrodes to ensure sufficient CO2 availability at the electrode surface. Carbon-free Ag electrodes offer superior stability compared to carbon-based ones but are challenged by complex electrolyte intrusion and distribution. This study combines experimental variations in electrode design and operating parameters with modeling to identify key factors for high Faradaic efficiency towards CO and high current densities. Results emphasize the importance of an optimal gas/liquid interface. Increasing gas-side overpressure from 60 to 100 mbar doubled the Faradaic efficiency for CO from 20 % to 42 % at 200 mA cm−2 due to higher local CO2 concentrations in electrolyte-flooded regions. Thin electrodes of 200 µm outperformed thicker ones up to 390 µm, achieving higher efficiencies by enhancing CO2 and electrolyte transport, which lowered local pH levels. Optimizing PTFE content further improved performance; reducing PTFE from 2 to 1 wt% increased Faradaic efficiency by 20 % at 200 mA cm−2 by balancing hydrophobicity and active surface exposure. These insights into the relationship between electrode properties, operating conditions, and gas-liquid distribution advance the design of gas diffusion electrodes for competitive CO2 reduction applications.
电化学CO2还原无碳银气体扩散电极电解液侵入的控制
在电化学CO2还原中实现高转化率需要气体扩散电极,以确保电极表面有足够的CO2可用性。与碳基电极相比,无碳银电极具有优越的稳定性,但受到复杂电解质侵入和分布的挑战。本研究将电极设计和操作参数的实验变化与建模相结合,以确定对CO和高电流密度具有高法拉第效率的关键因素。结果强调了最佳气液界面的重要性。将气侧超压从60毫巴增加到100毫巴,在200 毫巴 厘米−2时,CO的法拉第效率从20 %增加到42 %,这是由于电解质淹水区域的局部二氧化碳浓度较高。200 µm的薄电极优于390 µm的厚电极,通过增强二氧化碳和电解质的运输,从而降低了局部pH值,从而实现了更高的效率。优化PTFE含量进一步提高了性能;通过平衡疏水性和活性表面暴露,将聚四氟乙烯从2降低到1 wt%,在200 mA cm−2时,法拉第效率提高了20 %。这些对电极性能、操作条件和气液分布之间关系的深入了解,推动了气体扩散电极的设计,用于具有竞争力的二氧化碳减排应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信