Shih-Yu Lee , I-Hsun Li , Wei-Cheng Tsai , Ming-Hua Ho , Chung-Hsing Li
{"title":"The investigation of effects, signal pathways, and applications of high glucose on dental pulp stem cells","authors":"Shih-Yu Lee , I-Hsun Li , Wei-Cheng Tsai , Ming-Hua Ho , Chung-Hsing Li","doi":"10.1016/j.jds.2025.03.038","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/purpose</h3><div>Dental pulp stem cells (DPSCs) are among the most widely used dental-derived mesenchymal stem cells (MSCs), and their applications have involved various regions. The glucose metabolism plays a key role in cell function and the current literature presents conflicting evidence regarding the influence of glucose on MSCs' properties. This study evaluated the impact of high glucose (HG) on DPSCs.</div></div><div><h3>Materials and methods</h3><div>DPSCs were stimulated with indicated concentrations of glucose. Cell viability was assessed using a cell counting kit, while apoptosis and autophagy were analyzed via western blot. MSCs immunophenotypic properties were determined by flow cytometry. Osteogenic, adipogenic, and neurogenic differentiation potential were evaluated using western blot, Alizarin red staining, oil red-O staining, and morphological analysis.</div></div><div><h3>Results</h3><div>HG exposure led to a significant decrease in cell viability, with increased apoptosis and autophagy, as indicated by increased levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), and an elevated microtubule-associated protein 1 light chain 3 beta (LC3B)-II/LC3B-I ratio. However, the immunophenotypic characteristics of DPSCs remained unchanged. DPSCs also demonstrated enhanced osteogenic, adipogenic, and neurogenic differentiation potential by expressing Alizarin red and oil red-O staining, neural-like cell morphology, and several differentiation-related proteins after HG culture stimulation.</div></div><div><h3>Conclusion</h3><div>The present study demonstrated that while HG slightly impairs DPSC viability, it promotes osteogenic, adipogenic, and neurogenic differentiation. Providing valuable insights into the mechanisms by which HG influences various differentiation pathways in DPSCs and establishes a foundation for potential clinical applications of DPSCs in regenerative medicine for diabetic patients.</div></div>","PeriodicalId":15583,"journal":{"name":"Journal of Dental Sciences","volume":"20 3","pages":"Pages 1731-1738"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1991790225001114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background/purpose
Dental pulp stem cells (DPSCs) are among the most widely used dental-derived mesenchymal stem cells (MSCs), and their applications have involved various regions. The glucose metabolism plays a key role in cell function and the current literature presents conflicting evidence regarding the influence of glucose on MSCs' properties. This study evaluated the impact of high glucose (HG) on DPSCs.
Materials and methods
DPSCs were stimulated with indicated concentrations of glucose. Cell viability was assessed using a cell counting kit, while apoptosis and autophagy were analyzed via western blot. MSCs immunophenotypic properties were determined by flow cytometry. Osteogenic, adipogenic, and neurogenic differentiation potential were evaluated using western blot, Alizarin red staining, oil red-O staining, and morphological analysis.
Results
HG exposure led to a significant decrease in cell viability, with increased apoptosis and autophagy, as indicated by increased levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), and an elevated microtubule-associated protein 1 light chain 3 beta (LC3B)-II/LC3B-I ratio. However, the immunophenotypic characteristics of DPSCs remained unchanged. DPSCs also demonstrated enhanced osteogenic, adipogenic, and neurogenic differentiation potential by expressing Alizarin red and oil red-O staining, neural-like cell morphology, and several differentiation-related proteins after HG culture stimulation.
Conclusion
The present study demonstrated that while HG slightly impairs DPSC viability, it promotes osteogenic, adipogenic, and neurogenic differentiation. Providing valuable insights into the mechanisms by which HG influences various differentiation pathways in DPSCs and establishes a foundation for potential clinical applications of DPSCs in regenerative medicine for diabetic patients.
期刊介绍:
he Journal of Dental Sciences (JDS), published quarterly, is the official and open access publication of the Association for Dental Sciences of the Republic of China (ADS-ROC). The precedent journal of the JDS is the Chinese Dental Journal (CDJ) which had already been covered by MEDLINE in 1988. As the CDJ continued to prove its importance in the region, the ADS-ROC decided to move to the international community by publishing an English journal. Hence, the birth of the JDS in 2006. The JDS is indexed in the SCI Expanded since 2008. It is also indexed in Scopus, and EMCare, ScienceDirect, SIIC Data Bases.
The topics covered by the JDS include all fields of basic and clinical dentistry. Some manuscripts focusing on the study of certain endemic diseases such as dental caries and periodontal diseases in particular regions of any country as well as oral pre-cancers, oral cancers, and oral submucous fibrosis related to betel nut chewing habit are also considered for publication. Besides, the JDS also publishes articles about the efficacy of a new treatment modality on oral verrucous hyperplasia or early oral squamous cell carcinoma.