Effects of 3D-printers and manufacturer-specified post-curing units on the dimensional accuracy, compressive strength, and degree of conversion of resin for fixed dental prostheses
Citra Dewi Sahrir , Wei-Shao Lin , Ching-Shuen Wang , Hwai-En Lin , Chin-Wei Wang , Wei-Chun Lin
{"title":"Effects of 3D-printers and manufacturer-specified post-curing units on the dimensional accuracy, compressive strength, and degree of conversion of resin for fixed dental prostheses","authors":"Citra Dewi Sahrir , Wei-Shao Lin , Ching-Shuen Wang , Hwai-En Lin , Chin-Wei Wang , Wei-Chun Lin","doi":"10.1016/j.jds.2025.03.024","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/purpose</h3><div>The 3D printer and post-curing unit are important factors in producing the best 3D printed crowns. To explore the effects of different combinations of 3D-printers and manufacturer-specified post-curing units on the dimensional accuracy, compressive strength, and degree of conversion (DC%) of 3D-printable resin for fixed dental prostheses.</div></div><div><h3>Materials and methods</h3><div>Specimens were designed in 2 sizes and additively-manufactured using 2 digital light processing (DLP) 3D-printers (NextDent 5100, ND and PrintinDLP+, PN). The 3D-printed samples were polymerized using 2 different post curing units (LC-3D Print box, N and PrintInCure+, P). Dimensional accuracy was evaluated under an optical microscope, while compressive strength was determined using a universal testing machine. Fourier transform infrared spectroscopy was used to analyze the resin molecular bond characteristics and DC%. Statistical analysis, including ANOVA and Tukey's HSD post-hoc tests (<em>P</em> < 0.05).</div></div><div><h3>Results</h3><div>Significant dimensional variations were observed for both square and rectangular samples (<em>P</em> < 0.001). The ND-P showed the greatest ductility and relatively high maximum stress. The fracture strengths were ND-N: 181.55 ± 8.37 MPa, ND-P: 151.54 ± 2.06 MPa, PN-N: 175.51 ± 12.44 MPa, and PN-P: 127.84 ± 10.10 MPa (<em>P</em> < 0.001). Surface inspection at 200 × magnification revealed subtler fault lines in ND-N and PN-P. FTIR analyses confirmed DC% was highest for ND-N (79.70 ± 1.02%) and PN-N (78.12 ± 0.94%), intermediate for ND-P (73.24 ± 0.89%) and PN-P (71.06 ± 1.67%).</div></div><div><h3>Conclusion</h3><div>Post-curing units had a greater impact on dimensional accuracy, strength, and polymerization than the choice of 3D-printer. Optimal resin properties require careful optimization of post-curing parameters and equipment.</div></div>","PeriodicalId":15583,"journal":{"name":"Journal of Dental Sciences","volume":"20 3","pages":"Pages 1699-1708"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1991790225000972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background/purpose
The 3D printer and post-curing unit are important factors in producing the best 3D printed crowns. To explore the effects of different combinations of 3D-printers and manufacturer-specified post-curing units on the dimensional accuracy, compressive strength, and degree of conversion (DC%) of 3D-printable resin for fixed dental prostheses.
Materials and methods
Specimens were designed in 2 sizes and additively-manufactured using 2 digital light processing (DLP) 3D-printers (NextDent 5100, ND and PrintinDLP+, PN). The 3D-printed samples were polymerized using 2 different post curing units (LC-3D Print box, N and PrintInCure+, P). Dimensional accuracy was evaluated under an optical microscope, while compressive strength was determined using a universal testing machine. Fourier transform infrared spectroscopy was used to analyze the resin molecular bond characteristics and DC%. Statistical analysis, including ANOVA and Tukey's HSD post-hoc tests (P < 0.05).
Results
Significant dimensional variations were observed for both square and rectangular samples (P < 0.001). The ND-P showed the greatest ductility and relatively high maximum stress. The fracture strengths were ND-N: 181.55 ± 8.37 MPa, ND-P: 151.54 ± 2.06 MPa, PN-N: 175.51 ± 12.44 MPa, and PN-P: 127.84 ± 10.10 MPa (P < 0.001). Surface inspection at 200 × magnification revealed subtler fault lines in ND-N and PN-P. FTIR analyses confirmed DC% was highest for ND-N (79.70 ± 1.02%) and PN-N (78.12 ± 0.94%), intermediate for ND-P (73.24 ± 0.89%) and PN-P (71.06 ± 1.67%).
Conclusion
Post-curing units had a greater impact on dimensional accuracy, strength, and polymerization than the choice of 3D-printer. Optimal resin properties require careful optimization of post-curing parameters and equipment.
期刊介绍:
he Journal of Dental Sciences (JDS), published quarterly, is the official and open access publication of the Association for Dental Sciences of the Republic of China (ADS-ROC). The precedent journal of the JDS is the Chinese Dental Journal (CDJ) which had already been covered by MEDLINE in 1988. As the CDJ continued to prove its importance in the region, the ADS-ROC decided to move to the international community by publishing an English journal. Hence, the birth of the JDS in 2006. The JDS is indexed in the SCI Expanded since 2008. It is also indexed in Scopus, and EMCare, ScienceDirect, SIIC Data Bases.
The topics covered by the JDS include all fields of basic and clinical dentistry. Some manuscripts focusing on the study of certain endemic diseases such as dental caries and periodontal diseases in particular regions of any country as well as oral pre-cancers, oral cancers, and oral submucous fibrosis related to betel nut chewing habit are also considered for publication. Besides, the JDS also publishes articles about the efficacy of a new treatment modality on oral verrucous hyperplasia or early oral squamous cell carcinoma.