A Cs-smooth mixed degree and regularity isogeometric spline space over planar multi-patch domains

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Mario Kapl , Aljaž Kosmač , Vito Vitrih
{"title":"A Cs-smooth mixed degree and regularity isogeometric spline space over planar multi-patch domains","authors":"Mario Kapl ,&nbsp;Aljaž Kosmač ,&nbsp;Vito Vitrih","doi":"10.1016/j.cam.2025.116836","DOIUrl":null,"url":null,"abstract":"<div><div>We construct over a given bilinear multi-patch domain a novel <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-smooth mixed degree and regularity isogeometric spline space, which possesses the degree <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn></mrow></math></span> and regularity <span><math><mrow><mi>r</mi><mo>=</mo><mi>s</mi></mrow></math></span> in a small neighborhood around the edges and vertices, and the degree <span><math><mrow><mover><mrow><mi>p</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>≤</mo><mi>p</mi></mrow></math></span> with regularity <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>p</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>−</mo><mn>1</mn><mo>≥</mo><mi>r</mi></mrow></math></span> in all other parts of the domain. Our proposed approach relies on the technique Kapl and Vitrih (2021), which requires for the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-smooth isogeometric spline space a degree at least <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn></mrow></math></span> on the entire multi-patch domain. Similar to Kapl and Vitrih (2021), the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-smooth mixed degree and regularity spline space is generated as the span of basis functions that correspond to the individual patches, edges and vertices of the domain. The reduction of degrees of freedom for the functions in the interior of the patches is achieved by introducing an appropriate mixed degree and regularity underlying spline space over <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> to define the functions on the single patches. We further extend our construction with a few examples to the class of bilinear-like <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> multi-patch parameterizations (Kapl and Vitrih (2018); Kapl and Vitrih (2021)), which enables the design of multi-patch domains having curved boundaries and interfaces. Finally, the great potential of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-smooth mixed degree and regularity isogeometric spline space for performing isogeometric analysis is demonstrated by several numerical examples of solving two particular high order partial differential equations, namely the biharmonic and triharmonic equation, via the isogeometric Galerkin method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"473 ","pages":"Article 116836"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003504","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We construct over a given bilinear multi-patch domain a novel Cs-smooth mixed degree and regularity isogeometric spline space, which possesses the degree p=2s+1 and regularity r=s in a small neighborhood around the edges and vertices, and the degree p˜p with regularity r˜=p˜1r in all other parts of the domain. Our proposed approach relies on the technique Kapl and Vitrih (2021), which requires for the Cs-smooth isogeometric spline space a degree at least p=2s+1 on the entire multi-patch domain. Similar to Kapl and Vitrih (2021), the Cs-smooth mixed degree and regularity spline space is generated as the span of basis functions that correspond to the individual patches, edges and vertices of the domain. The reduction of degrees of freedom for the functions in the interior of the patches is achieved by introducing an appropriate mixed degree and regularity underlying spline space over [0,1]2 to define the functions on the single patches. We further extend our construction with a few examples to the class of bilinear-like Gs multi-patch parameterizations (Kapl and Vitrih (2018); Kapl and Vitrih (2021)), which enables the design of multi-patch domains having curved boundaries and interfaces. Finally, the great potential of the Cs-smooth mixed degree and regularity isogeometric spline space for performing isogeometric analysis is demonstrated by several numerical examples of solving two particular high order partial differential equations, namely the biharmonic and triharmonic equation, via the isogeometric Galerkin method.
平面多斑块域上的cs -光滑混合度和规则等比样条空间
在给定的双线性多块域上构造了一种新颖的cs -光滑混合阶次和正则等几何样条空间,该空间在边缘和顶点周围的小邻域具有p=2s+1的阶次和r=s的正则性,在域的其他部分具有p ~≤p的阶次和r ~ =p ~−1≥r的正则性。我们提出的方法依赖于Kapl和Vitrih(2021)的技术,该技术要求cs -光滑等几何样条空间在整个多斑块域上至少具有p=2s+1度。与Kapl和Vitrih(2021)类似,cs -光滑混合度和正则样条空间是作为对应于域的单个斑块、边缘和顶点的基函数的跨度生成的。通过在[0,1]2上引入适当的混合度和正则样条空间来定义单个块上的函数,实现了块内部函数自由度的降低。我们通过几个例子进一步扩展了我们的构造,将其扩展到双线性类Gs多patch参数化(Kapl和Vitrih (2018);Kapl和Vitrih(2021)),这使得设计具有弯曲边界和界面的多补丁域成为可能。最后,通过等几何伽辽金方法求解两种特殊的高阶偏微分方程(双调和方程和三调和方程)的数值算例,证明了cs -光滑混合度和正则等比样条空间在等比分析中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信