{"title":"Investigation on the thermal stability, crystallization kinetics and magnetic properties of Fe-Si-B-P-C-Nb amorphous alloys","authors":"Yifan He, Rui Sun, Zilong Xu, Jingjing Huang, Songwei Wang, Chengying Tang","doi":"10.1016/j.pnsc.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the thermal stability, isothermal and non-isothermal crystallization kinetics, and soft magnetic properties of Fe-Si-B-P-C-Nb amorphous alloys. Phase transformations were analyzed using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under non-isothermal conditions, activation energies, local activation energies and local Avrami exponents were calculated to investigate nucleation and growth mechanisms during crystallization. The results indicate that characteristic temperatures vary with the heating rate, while activation energy values confirm the superior thermal stability of the Fe<sub>82.8</sub>Si<sub>0.2</sub>B<sub>12</sub>P<sub>2.25</sub>C<sub>2.25</sub>Nb<sub>0.5</sub> alloy. During crystallization, local activation energy initially increases before reaching a peak and subsequently decreasing. The local Avrami exponent further suggests that crystallization in both amorphous ribbons is predominantly governed by three-dimensional growth with fluctuating nucleation rates. Additionally, the isothermal crystallization kinetics of the Fe<sub>82.8</sub>Si<sub>0.2</sub>B<sub>12</sub>P<sub>2.25</sub>C<sub>2.25</sub>Nb<sub>0.5</sub> amorphous ribbon were analyzed to deepen our understanding of the crystallization mechanisms and provide theoretical insights for optimizing material properties. By fine-tuning annealing parameters, the crystallization behavior can be controlled to achieve different crystallized volume fractions, thereby developing nanocrystalline materials with enhanced soft magnetic properties. Specifically, the saturation magnetization flux density (<em>B</em><sub><em>s</em></sub>) reached 1.79 T, while the coercivity (<em>H</em><sub><em>c</em></sub>) was as low as 5.2 A/m.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"35 3","pages":"Pages 586-594"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007125000401","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the thermal stability, isothermal and non-isothermal crystallization kinetics, and soft magnetic properties of Fe-Si-B-P-C-Nb amorphous alloys. Phase transformations were analyzed using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under non-isothermal conditions, activation energies, local activation energies and local Avrami exponents were calculated to investigate nucleation and growth mechanisms during crystallization. The results indicate that characteristic temperatures vary with the heating rate, while activation energy values confirm the superior thermal stability of the Fe82.8Si0.2B12P2.25C2.25Nb0.5 alloy. During crystallization, local activation energy initially increases before reaching a peak and subsequently decreasing. The local Avrami exponent further suggests that crystallization in both amorphous ribbons is predominantly governed by three-dimensional growth with fluctuating nucleation rates. Additionally, the isothermal crystallization kinetics of the Fe82.8Si0.2B12P2.25C2.25Nb0.5 amorphous ribbon were analyzed to deepen our understanding of the crystallization mechanisms and provide theoretical insights for optimizing material properties. By fine-tuning annealing parameters, the crystallization behavior can be controlled to achieve different crystallized volume fractions, thereby developing nanocrystalline materials with enhanced soft magnetic properties. Specifically, the saturation magnetization flux density (Bs) reached 1.79 T, while the coercivity (Hc) was as low as 5.2 A/m.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.