José A. Rodrigues-Neto , Matthew Ryan , James Taylor
{"title":"A stricter canon: General Luce models for arbitrary menu sets","authors":"José A. Rodrigues-Neto , Matthew Ryan , James Taylor","doi":"10.1016/j.mathsocsci.2025.102431","DOIUrl":null,"url":null,"abstract":"<div><div>Alós-Ferrer and Mihm (2025, Corollary 1) recently provided a characterisation the classical Luce model (Luce, 1959) when choices are observed for an arbitrarily restricted collection of menus, as is typical in experimental settings or when working with field data. They also characterise the general Luce model (<em>ibid.</em>, Theorem 1), which allows choice probabilities to be zero, for the same setting. The latter characterisation involves a single axiom – the <em>general product rule (GPR)</em>. An important special case of the general Luce model is obtained when the mapping from menus to the support of choice probabilities can be rationalised by a weak order. Cerreia-Vioglio et al. (2021) show that this special case is characterised by Luce’s (1959) <em>choice axiom</em>, provided choice is observed for all possible (finite) menus. The choice axiom is thus a fundamental “canon of probabilistic rationality”. We show that a natural – and surprisingly simple – strengthening of the GPR characterises the model of Cerreia-Vioglio et al. (2021) when the menu set is arbitrarily restricted. Our axiom implies the choice axiom, and is therefore a “stricter canon”.</div></div>","PeriodicalId":51118,"journal":{"name":"Mathematical Social Sciences","volume":"136 ","pages":"Article 102431"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Social Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165489625000460","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Alós-Ferrer and Mihm (2025, Corollary 1) recently provided a characterisation the classical Luce model (Luce, 1959) when choices are observed for an arbitrarily restricted collection of menus, as is typical in experimental settings or when working with field data. They also characterise the general Luce model (ibid., Theorem 1), which allows choice probabilities to be zero, for the same setting. The latter characterisation involves a single axiom – the general product rule (GPR). An important special case of the general Luce model is obtained when the mapping from menus to the support of choice probabilities can be rationalised by a weak order. Cerreia-Vioglio et al. (2021) show that this special case is characterised by Luce’s (1959) choice axiom, provided choice is observed for all possible (finite) menus. The choice axiom is thus a fundamental “canon of probabilistic rationality”. We show that a natural – and surprisingly simple – strengthening of the GPR characterises the model of Cerreia-Vioglio et al. (2021) when the menu set is arbitrarily restricted. Our axiom implies the choice axiom, and is therefore a “stricter canon”.
期刊介绍:
The international, interdisciplinary journal Mathematical Social Sciences publishes original research articles, survey papers, short notes and book reviews. The journal emphasizes the unity of mathematical modelling in economics, psychology, political sciences, sociology and other social sciences.
Topics of particular interest include the fundamental aspects of choice, information, and preferences (decision science) and of interaction (game theory and economic theory), the measurement of utility, welfare and inequality, the formal theories of justice and implementation, voting rules, cooperative games, fair division, cost allocation, bargaining, matching, social networks, and evolutionary and other dynamics models.
Papers published by the journal are mathematically rigorous but no bounds, from above or from below, limits their technical level. All mathematical techniques may be used. The articles should be self-contained and readable by social scientists trained in mathematics.