On the existence of globally bounded solutions for a spatial Solow-Swan model with density-dependent motion

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Yingying Li, Kaiqiang Li, Liqiong Pu, Jiashan Zheng
{"title":"On the existence of globally bounded solutions for a spatial Solow-Swan model with density-dependent motion","authors":"Yingying Li,&nbsp;Kaiqiang Li,&nbsp;Liqiong Pu,&nbsp;Jiashan Zheng","doi":"10.1016/j.nonrwa.2025.104453","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines a spatial Solow-Swan model characterized by density-dependent motion, as illustrated by the following system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>γ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>−</mo><mi>u</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>σ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> are positive constants, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> denotes a bounded domain with a smooth boundary, and the functions <span><math><mi>ϕ</mi></math></span> and <span><math><mi>γ</mi></math></span> belong to <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>,</mo><mi>γ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> for all <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. The conditions for the parameters are specified as follows: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mi>σ</mi><mo>+</mo><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn><mo>−</mo><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Under Neumann boundary conditions, a unique globally bounded classical solution is established. Additionally, we illustrate that the solution to the aforementioned system converges exponentially to the steady state <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104453"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001397","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines a spatial Solow-Swan model characterized by density-dependent motion, as illustrated by the following system ut=(γ(v)uuϕ(v)v)+μu(1uσ),xΩ,t>0,vt=Δvv+u1αvα,xΩ,t>0,where σ>0,α(0,1) are positive constants, ΩRN(N1) denotes a bounded domain with a smooth boundary, and the functions ϕ and γ belong to C3([0,)) with ϕ(s),γ(s)>0 for all s0. The conditions for the parameters are specified as follows: σ+α>N2(1α),forμ>0,1α<2N,forμ=0.Under Neumann boundary conditions, a unique globally bounded classical solution is established. Additionally, we illustrate that the solution to the aforementioned system converges exponentially to the steady state (1,1) in L(Ω) as t.
具有密度相关运动的空间Solow-Swan模型全局有界解的存在性
本文研究了一个以密度相关运动为特征的空间索洛-斯万模型,如下系统ut=∇⋅(γ(v)∇u−uϕ(v)∇v)+μu(1−uσ),x∈Ω,t>0,vt=Δv−v+u1−αvα,x∈Ω,t>0,其中σ>;0,α∈(0,1)为正常数,Ω∧RN(N≥1)表示具有光滑边界的有界域,对于所有s≥0,函数φ和γ属于C3([0,∞)),其中φ (s),γ(s)>0。参数的条件为:σ+α>;N2(1−α),forμ>0,1−α<2N,forμ=0。在Neumann边界条件下,建立了唯一的全局有界经典解。此外,我们证明了上述系统的解在t→∞时指数收敛于L∞(Ω)上的稳态(1,1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信