Dynamics in a two-species system with common dynamical resources and general competition term

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Jianping Gao , Changfeng Liu , Wenyan Lian
{"title":"Dynamics in a two-species system with common dynamical resources and general competition term","authors":"Jianping Gao ,&nbsp;Changfeng Liu ,&nbsp;Wenyan Lian","doi":"10.1016/j.nonrwa.2025.104436","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the following two-species competition system with common dynamical resources <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>w</mi><mrow><mo>(</mo><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∈</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, the parameters <span><math><mi>μ</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> are positive and <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> satisfy <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo>(</mo><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>v</mi><mi>d</mi><mi>x</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mi>v</mi><mrow><mo>(</mo><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>v</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>. First, we show that the above system admits a unique global and uniformly bounded solution in any spatial dimension for suitable large intraspecific competition parameters <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Moreover, by constructing Lyapunov functionals and applying LaSalle’s invariant principle, we obtain some conditions under which the solutions converge to the coexistence steady state exponentially or to the competitive exclusion steady states algebraically as time goes to infinity under the cases where <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104436"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the following two-species competition system with common dynamical resources ut=d1Δuχ1(uw)+f1(u,v,w),xΩ,t>0,vt=d2Δvχ2(vw)+f2(u,v,w),xΩ,t>0,τwt=d3Δww(u+v)+μw(m(x)w),xΩ,t>0,under homogeneous Neumann boundary conditions in a smoothly bounded domain ΩRn(n1), where τ{0,1}, function m(x)C(Ω̄), the parameters μ, di(i=1,2,3), χj(j=1,2) are positive and f1(u,v,w), f2(u,v,w) satisfy f1(u,v,w)=u(a1wa2ua3va4Ωudxa5Ωvdx),f2(u,v,w)=v(b1wb2vb3ub4Ωvdxb5Ωudx),with a1,a2,b1,b2>0 and a3, a4, a5, b3, b4, b5R. First, we show that the above system admits a unique global and uniformly bounded solution in any spatial dimension for suitable large intraspecific competition parameters a2 and b2. Moreover, by constructing Lyapunov functionals and applying LaSalle’s invariant principle, we obtain some conditions under which the solutions converge to the coexistence steady state exponentially or to the competitive exclusion steady states algebraically as time goes to infinity under the cases where ai,bi>0(i=3,4,5) or ai,bi<0(i=3,5), a4,b4R.
具有共同动态资源和一般竞争条件的两物种系统动力学
本文研究具有共同动力资源ut=d1Δu−χ1∇⋅(u∇w)+f1(u,v,w),x∈Ω,t>0,vt=d2Δv−χ2∇⋅(v∇w)+f2(u,v,w),x∈Ω,t>0,τwt=d3Δw−w(u+v)+μw(m(x)−w),x∈Ω,t>0,在光滑有界域Ω∧Rn(n≥1)上齐次Neumann边界条件下,其中τ∈{0,1},函数m(x)∈C(Ω),参数μ, di(i=1,2,3), χj(j=1,2)为正,f1(u,v,w),f2 (u, v, w)满足f1 (u, v, w) = u (a1w−a2u−a3v−a4∫Ωudx−a5∫Ωvdx), f2 (u, v, w) = v (b1w−b2v−b3u−b4∫Ωvdx−b5∫Ωudx), a1, a2, b1, b2> 0和a3、a4、a5, b3, b4, b5∈R。首先,对于合适的大种内竞争参数a2和b2,我们证明了上述系统在任何空间维度上都存在唯一的全局一致有界解。此外,通过构造Lyapunov泛函并应用LaSalle不变原理,得到了在ai,bi>0(i=3,4,5)或ai,bi>0(i= 3,5), a4,b4∈R的情况下,随着时间趋于无穷,解以指数收敛于共存稳态或以代数收敛于竞争不相容稳态的若干条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信