{"title":"Dynamics in a two-species system with common dynamical resources and general competition term","authors":"Jianping Gao , Changfeng Liu , Wenyan Lian","doi":"10.1016/j.nonrwa.2025.104436","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the following two-species competition system with common dynamical resources <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>w</mi><mrow><mo>(</mo><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∈</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, the parameters <span><math><mi>μ</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> are positive and <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> satisfy <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo>(</mo><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>v</mi><mi>d</mi><mi>x</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mi>v</mi><mrow><mo>(</mo><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>v</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>. First, we show that the above system admits a unique global and uniformly bounded solution in any spatial dimension for suitable large intraspecific competition parameters <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Moreover, by constructing Lyapunov functionals and applying LaSalle’s invariant principle, we obtain some conditions under which the solutions converge to the coexistence steady state exponentially or to the competitive exclusion steady states algebraically as time goes to infinity under the cases where <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104436"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the following two-species competition system with common dynamical resources under homogeneous Neumann boundary conditions in a smoothly bounded domain , where , function , the parameters , , are positive and , satisfy with and , , , , , . First, we show that the above system admits a unique global and uniformly bounded solution in any spatial dimension for suitable large intraspecific competition parameters and . Moreover, by constructing Lyapunov functionals and applying LaSalle’s invariant principle, we obtain some conditions under which the solutions converge to the coexistence steady state exponentially or to the competitive exclusion steady states algebraically as time goes to infinity under the cases where or , .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.