Ordered Gallai–Ramsey numbers

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yaping Mao
{"title":"Ordered Gallai–Ramsey numbers","authors":"Yaping Mao","doi":"10.1016/j.dam.2025.06.018","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>ordered graph</em> is a pair <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></math></span> where <span><math><mi>A</mi></math></span> is an ordering of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span>. For given ordered graphs <span><math><mrow><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, the <em>ordered Gallai–Ramsey number</em> <span><math><mrow><msub><mrow><mover><mrow><mi>g</mi><mi>r</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow><mo>:</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is defined as the smallest number <span><math><mi>N</mi></math></span> such that every <span><math><mi>k</mi></math></span>-edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> contains an order preserving rainbow copy of <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></math></span> or an order preserving monochromatic copy of <span><math><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></math></span> with color <span><math><mi>i</mi></math></span> as an ordered subgraph. In this paper, we first studied the ordered complete graphs without small rainbow subgraphs, like stars, paths, and matchings. Next, we give the exact values or bounds for the ordered Gallai–Ramsey numbers.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 62-71"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003336","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An ordered graph is a pair (G,A) where A is an ordering of V(G) of a graph G. For given ordered graphs (G,A),(H1,A1),(H2,A2),,(Hk,Ak), the ordered Gallai–Ramsey number gr¯k((G,A):(H1,A1),(H2,A2),,(Hk,Ak)) is defined as the smallest number N such that every k-edge-coloring of KN contains an order preserving rainbow copy of (G,A) or an order preserving monochromatic copy of (Hi,Ai) with color i as an ordered subgraph. In this paper, we first studied the ordered complete graphs without small rainbow subgraphs, like stars, paths, and matchings. Next, we give the exact values or bounds for the ordered Gallai–Ramsey numbers.
订购了加莱-拉姆齐号码
对于给定的有序图(G, a),(H1,A1),(H2,A2),…,(Hk,Ak),有序galai - ramsey数gr¯k((G, a):(H1,A1),(H2,A2),…,(Hk,Ak))定义为最小的数N,使得KN的每k边着色都包含(G, a)的保序彩虹副本或(Hi,Ai)的保序单色副本,颜色i为有序子图。在本文中,我们首先研究了没有小彩虹子图,如星星、路径和匹配的有序完全图。接下来,我们给出有序Gallai-Ramsey数的确切值或边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信