Perfect triple Roman domination

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
M. Kor , J. Amjadi , M. Chellali , S.M. Sheikholeslami
{"title":"Perfect triple Roman domination","authors":"M. Kor ,&nbsp;J. Amjadi ,&nbsp;M. Chellali ,&nbsp;S.M. Sheikholeslami","doi":"10.1016/j.dam.2025.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>f</mi></math></span> be a function that assigns labels from the set <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></math></span> to the vertices of a simple graph <span><math><mi>G</mi></math></span>. The active neighborhood <span><math><mrow><mi>A</mi><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> of a vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with respect to <span><math><mi>f</mi></math></span> is the set of all neighbors of <span><math><mi>v</mi></math></span> that are assigned non-zero values under <span><math><mi>f</mi></math></span>. The function <span><math><mi>f</mi></math></span> is a perfect triple Roman dominating function (PTRD-function) on <span><math><mi>G</mi></math></span> if for every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>&lt;</mo><mn>3</mn></mrow></math></span>, we have <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mo>∈</mo><mi>N</mi><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>A</mi><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mn>3</mn></mrow></math></span>. The weight of a PTRD-function is the sum of its function values over the whole set of vertices, and the PTRD-number is the minimum weight of a PTRD-function on <span><math><mi>G</mi></math></span>. In this paper, we show that determining the PTRD-number is NP-complete even when restricted to bipartite graphs. Moreover, the exact values of the PTRD-number for paths and cycles are established. Moreover, we provide an upper bound for the PTRD-number for trees of order at least five and we characterize the extremal trees attaining this upper bound.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 41-49"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003269","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let f be a function that assigns labels from the set {0,1,2,3,4} to the vertices of a simple graph G. The active neighborhood AN(v) of a vertex vV(G) with respect to f is the set of all neighbors of v that are assigned non-zero values under f. The function f is a perfect triple Roman dominating function (PTRD-function) on G if for every vertex vV(G) with f(v)<3, we have uN[v]f(u)=|AN(v)|+3. The weight of a PTRD-function is the sum of its function values over the whole set of vertices, and the PTRD-number is the minimum weight of a PTRD-function on G. In this paper, we show that determining the PTRD-number is NP-complete even when restricted to bipartite graphs. Moreover, the exact values of the PTRD-number for paths and cycles are established. Moreover, we provide an upper bound for the PTRD-number for trees of order at least five and we characterize the extremal trees attaining this upper bound.
完美的三罗马统治
设f是一个函数,它将集合{0,1,2,3,4}中的标记赋给简单图G的顶点。顶点v∈v (G)关于f的活动邻域AN(v)是在f下赋非零值的v的所有邻域的集合。函数f是G上的完美三重罗马支配函数(ptrd函数),如果对于每个顶点v∈v (G)与f(v)<3,我们有∑u∈N[v]f(u)=|AN(v)|+3。ptrd -函数的权值是它在整个顶点集合上的函数值的和,ptrd -数是ptrd -函数在g上的最小权值。本文证明了ptrd -数的确定即使限制在二部图上也是np完全的。此外,还建立了路径和循环的ptrd数的精确值。此外,我们给出了至少5阶树的ptrd数的上界,并刻画了达到这个上界的极值树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信