Connectivity constraints for eigenvalue reduction in level-set topology optimization

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Giacomo Bonaccorsi , Matteo Pozzi , Jaeyub Hyun , Hyunsun Alicia Kim , Francesco Braghin
{"title":"Connectivity constraints for eigenvalue reduction in level-set topology optimization","authors":"Giacomo Bonaccorsi ,&nbsp;Matteo Pozzi ,&nbsp;Jaeyub Hyun ,&nbsp;Hyunsun Alicia Kim ,&nbsp;Francesco Braghin","doi":"10.1016/j.compstruc.2025.107865","DOIUrl":null,"url":null,"abstract":"<div><div>Eigenvalue problems play a fundamental role in structural dynamics and engineering design, with topology optimization offering powerful tools for achieving superior performance. While most research has focused on eigenvalue maximization, only a few studies have explored eigenvalue assignment or reduction. This work investigates the challenges associated with eigenfrequency minimization in level-set topology optimization, highlighting the risk of infeasible or fragmented designs. To overcome these issues, we propose a formulation that integrates connectivity constraints to preserve structural integrity, thereby addressing an inherent limitation of eigenfrequency reduction. A comparative analysis of eigenfrequency minimization and maximization is presented, emphasizing the role of the ersatz material interpolation scheme and the impact of constraint enforcement. The proposed methodology is demonstrated through numerical examples, illustrating its effectiveness in achieving feasible layouts and highlighting its potential applications across a wide class of structural dynamics problems.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"316 ","pages":"Article 107865"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925002238","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Eigenvalue problems play a fundamental role in structural dynamics and engineering design, with topology optimization offering powerful tools for achieving superior performance. While most research has focused on eigenvalue maximization, only a few studies have explored eigenvalue assignment or reduction. This work investigates the challenges associated with eigenfrequency minimization in level-set topology optimization, highlighting the risk of infeasible or fragmented designs. To overcome these issues, we propose a formulation that integrates connectivity constraints to preserve structural integrity, thereby addressing an inherent limitation of eigenfrequency reduction. A comparative analysis of eigenfrequency minimization and maximization is presented, emphasizing the role of the ersatz material interpolation scheme and the impact of constraint enforcement. The proposed methodology is demonstrated through numerical examples, illustrating its effectiveness in achieving feasible layouts and highlighting its potential applications across a wide class of structural dynamics problems.
水平集拓扑优化中特征值约简的连通性约束
特征值问题在结构动力学和工程设计中起着至关重要的作用,而拓扑优化是实现结构卓越性能的有力工具。虽然大多数研究都集中在特征值最大化上,但只有少数研究探讨了特征值分配或约简。这项工作调查了与水平集拓扑优化中特征频率最小化相关的挑战,突出了不可行或碎片化设计的风险。为了克服这些问题,我们提出了一个集成连接约束以保持结构完整性的公式,从而解决了特征频率降低的固有限制。给出了特征频率最小化和特征频率最大化的比较分析,强调了替代材料插值方案的作用和约束执行的影响。通过数值实例证明了所提出的方法在实现可行布局方面的有效性,并突出了其在广泛的结构动力学问题中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信