Efficient discretization of fractional SPDEs via Galerkin and exponential Euler methods

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Minoo Kamrani
{"title":"Efficient discretization of fractional SPDEs via Galerkin and exponential Euler methods","authors":"Minoo Kamrani","doi":"10.1016/j.camwa.2025.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an efficient numerical method for solving stochastic partial differential equations (SPDEs) involving infinite-dimensional fractional Brownian motion. Fractional Brownian motion, characterized by a Hurst parameter <span><math><mi>H</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, is a Gaussian process widely used to model various real-world phenomena. It is a fundamental model for representing persistent behaviors in physical systems, making it highly effective for simulating correlated noise in quantum mechanics, material science, and astrophysics. Our method combines the Galerkin approach for spatial discretization with the exponential Euler scheme for time discretization to approximate solutions for fractional SPDEs. Specifically, we consider <em>Q</em>-fractional Brownian motion with two distinct types of operator <em>Q</em>. This study aims to establish theoretical results regarding the convergence and error estimates of the proposed method, followed by validation through numerical experiments. The structure of the paper is designed to provide a comprehensive explanation of the problem, analyze spatial and temporal discretization errors, and include a numerical example in subsequent sections.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"193 ","pages":"Pages 205-221"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500255X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an efficient numerical method for solving stochastic partial differential equations (SPDEs) involving infinite-dimensional fractional Brownian motion. Fractional Brownian motion, characterized by a Hurst parameter H(0,1), is a Gaussian process widely used to model various real-world phenomena. It is a fundamental model for representing persistent behaviors in physical systems, making it highly effective for simulating correlated noise in quantum mechanics, material science, and astrophysics. Our method combines the Galerkin approach for spatial discretization with the exponential Euler scheme for time discretization to approximate solutions for fractional SPDEs. Specifically, we consider Q-fractional Brownian motion with two distinct types of operator Q. This study aims to establish theoretical results regarding the convergence and error estimates of the proposed method, followed by validation through numerical experiments. The structure of the paper is designed to provide a comprehensive explanation of the problem, analyze spatial and temporal discretization errors, and include a numerical example in subsequent sections.
基于伽辽金和指数欧拉方法的分数阶spde的有效离散化
本文提出了一种求解无限维分数阶布朗运动随机偏微分方程的有效数值方法。分数阶布朗运动是一种高斯过程,其特征为Hurst参数H∈(0,1),广泛用于模拟各种现实现象。它是表示物理系统中持久行为的基本模型,使其在量子力学、材料科学和天体物理学中非常有效地模拟相关噪声。我们的方法结合了空间离散化的伽辽金方法和时间离散化的指数欧拉格式来近似分数阶SPDEs的解。具体来说,我们考虑了两种不同类型的算子q的q分数布朗运动。本研究旨在建立关于所提出方法的收敛性和误差估计的理论结果,然后通过数值实验验证。本文的结构旨在提供对问题的全面解释,分析空间和时间离散误差,并在随后的章节中包括一个数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信