Mathematical solutions for moving generalized electric-magnetic-polarization saturation models in magneto-electro-elastic materials via weight functions

IF 2.3 4区 工程技术 Q3 MECHANICS
Sandeep Singh
{"title":"Mathematical solutions for moving generalized electric-magnetic-polarization saturation models in magneto-electro-elastic materials via weight functions","authors":"Sandeep Singh","doi":"10.1016/j.mechrescom.2025.104464","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an advanced analytical framework for solving moving generalized electric-magnetic-polarization saturation models in magneto-electro-elastic materials. The core methodology employs a weight function approach, which serves as a kernel to map applied electro-mechanical loads to stress intensity factors. The derivation involves solving boundary conditions using the crack opening displacement solution. A key contribution is the generalized strip yield model introduces a non-linear function <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> in the form <span><math><mrow><mo>(</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mfrac><mrow><mrow><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>|</mo></mrow></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow></math></span>. This allows flexibility in modeling saturation effects under varying displacement fields. Different <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span> values correspond to different material responses, enabling the model to capture a range of non-linear behaviors. Validate the generalized strip yield model’s results by comparing them with solutions obtained via the stress function approach. Perform simulations to study crack-face boundary conditions under prescribed electro-mechanical loading. The results illustrate how SIFs vary with the size of the induction zone, saturation parameters, and the applied electro-mechanical fields. The agreement between the generalized model and direct analytical methods supports its accuracy.</div></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":"148 ","pages":"Article 104464"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641325000977","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an advanced analytical framework for solving moving generalized electric-magnetic-polarization saturation models in magneto-electro-elastic materials. The core methodology employs a weight function approach, which serves as a kernel to map applied electro-mechanical loads to stress intensity factors. The derivation involves solving boundary conditions using the crack opening displacement solution. A key contribution is the generalized strip yield model introduces a non-linear function g(x) in the form (g(x)Ds=|xn|bnDs). This allows flexibility in modeling saturation effects under varying displacement fields. Different n values correspond to different material responses, enabling the model to capture a range of non-linear behaviors. Validate the generalized strip yield model’s results by comparing them with solutions obtained via the stress function approach. Perform simulations to study crack-face boundary conditions under prescribed electro-mechanical loading. The results illustrate how SIFs vary with the size of the induction zone, saturation parameters, and the applied electro-mechanical fields. The agreement between the generalized model and direct analytical methods supports its accuracy.
磁-电弹性材料中运动广义电-磁极化饱和模型的权函数解
本文提出了一种求解磁-电弹性材料中移动广义电-磁极化饱和模型的先进分析框架。核心方法采用权函数方法,该方法作为核心将应用的机电载荷映射到应力强度因子。推导过程涉及到用裂纹张开位移解求解边界条件。一个关键的贡献是广义条形屈服模型引入了一个非线性函数g(x),其形式为(g(x)Ds=|xn| bds)。这允许在不同位移场下灵活地建模饱和效果。不同的n-值对应不同的材料响应,使模型能够捕获一系列非线性行为。通过将广义带材屈服模型的结果与应力函数法得到的解进行比较,验证广义带材屈服模型的结果。在规定的机电载荷下进行模拟研究裂纹面边界条件。结果表明SIFs随感应区大小、饱和参数和外加电场的变化而变化。广义模型与直接解析方法的一致性支持了它的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
4.20%
发文量
114
审稿时长
9 months
期刊介绍: Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide: • a fast means of communication • an exchange of ideas among workers in mechanics • an effective method of bringing new results quickly to the public • an informal vehicle for the discussion • of ideas that may still be in the formative stages The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信