Dan Wang, Yaoyao Wang, Wilson Dumisani Gamuchirai Dube, Jiarong Zhang, Jie Gao, Xue Tang, Gisèle Ineza Urujeni, Yajie Zhang, Linjie Zhao, Hua He, Deli Xiao, Pierre Dramou
{"title":"A smart nanocomposite system for controlled insulin release and glucose sensing in diabetes management","authors":"Dan Wang, Yaoyao Wang, Wilson Dumisani Gamuchirai Dube, Jiarong Zhang, Jie Gao, Xue Tang, Gisèle Ineza Urujeni, Yajie Zhang, Linjie Zhao, Hua He, Deli Xiao, Pierre Dramou","doi":"10.1039/d5nr01437a","DOIUrl":null,"url":null,"abstract":"Diabetes is a global health challenge, driving the need for novel solutions in glucose monitoring and insulin delivery. Here, we present a next-generation glucose-responsive nanocomposite, ZIF-8@Ins-GOx/AuNCs, designed for simultaneous controlled insulin release and real-time glucose sensing. This dual-functional system synergistically integrates zeolite imidazolate framework-8 (ZIF-8), glucose oxidase (GOx), and gold nanoclusters (AuNCs), creating a highly efficient platform for personalized diabetes management. The nanocomposite exhibits an impressive glucose detection range (2.50–200 mM) with high sensitivity (LOD = 0.80 mM), offering unprecedented accuracy for early diagnosis and monitoring. In addition, it demonstrates a glucose-triggered insulin release profile with exceptional encapsulation efficiency (90%) and sustained release under hyperglycemic conditions. Comprehensive <em>in vitro</em> studies reveal excellent biocompatibility, with cell viability greater than 80% at concentrations up to 22.2 mM, highlighting the safety for potential clinical use. This work represents a significant leap forward in the development of adaptive drug delivery systems, offering a versatile, scalable platform with the potential to revolutionize not only diabetes treatment but also broader biomedical applications demanding precise, self-regulated therapeutic interventions.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"269 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr01437a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is a global health challenge, driving the need for novel solutions in glucose monitoring and insulin delivery. Here, we present a next-generation glucose-responsive nanocomposite, ZIF-8@Ins-GOx/AuNCs, designed for simultaneous controlled insulin release and real-time glucose sensing. This dual-functional system synergistically integrates zeolite imidazolate framework-8 (ZIF-8), glucose oxidase (GOx), and gold nanoclusters (AuNCs), creating a highly efficient platform for personalized diabetes management. The nanocomposite exhibits an impressive glucose detection range (2.50–200 mM) with high sensitivity (LOD = 0.80 mM), offering unprecedented accuracy for early diagnosis and monitoring. In addition, it demonstrates a glucose-triggered insulin release profile with exceptional encapsulation efficiency (90%) and sustained release under hyperglycemic conditions. Comprehensive in vitro studies reveal excellent biocompatibility, with cell viability greater than 80% at concentrations up to 22.2 mM, highlighting the safety for potential clinical use. This work represents a significant leap forward in the development of adaptive drug delivery systems, offering a versatile, scalable platform with the potential to revolutionize not only diabetes treatment but also broader biomedical applications demanding precise, self-regulated therapeutic interventions.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.