Jose J. Ferrero, Ahnaf R. Hassan, Zelin Yu, Zifang Zhao, Liang Ma, Cynthia Wu, Shan Shao, Takeshi Kawano, Judah Engel, Werner Doyle, Orrin Devinsky, Dion Khodagholy, Jennifer N. Gelinas
{"title":"Closed-loop electrical stimulation prevents focal epilepsy progression and long-term memory impairment","authors":"Jose J. Ferrero, Ahnaf R. Hassan, Zelin Yu, Zifang Zhao, Liang Ma, Cynthia Wu, Shan Shao, Takeshi Kawano, Judah Engel, Werner Doyle, Orrin Devinsky, Dion Khodagholy, Jennifer N. Gelinas","doi":"10.1038/s41593-025-01988-1","DOIUrl":null,"url":null,"abstract":"<p>Interictal epileptiform discharges (IEDs) are expressed in epileptic networks and disrupt cognitive functions. It is unclear whether addressing IED-induced dysfunction could improve epilepsy outcomes, as most therapeutic approaches target seizures. We show, in a kindling model of progressive focal epilepsy, that IEDs produce pathological oscillatory coupling associated with prolonged, hypersynchronous neural spiking in synaptically connected cortex and expand the brain territory capable of generating IEDs. A similar relationship between IED-mediated oscillatory coupling and temporal organization of IEDs across brain regions was identified in human participants with refractory focal epilepsy. Spatiotemporally targeted closed-loop electrical stimulation triggered on hippocampal IED occurrence eliminated the abnormal cortical activity patterns, preventing the spread of the epileptic network and ameliorating long-term spatial memory deficits in rodents. These findings suggest that stimulation-based network interventions that normalize interictal dynamics may be an effective treatment of epilepsy and its comorbidities, with a low barrier to clinical translation.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"19 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01988-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Interictal epileptiform discharges (IEDs) are expressed in epileptic networks and disrupt cognitive functions. It is unclear whether addressing IED-induced dysfunction could improve epilepsy outcomes, as most therapeutic approaches target seizures. We show, in a kindling model of progressive focal epilepsy, that IEDs produce pathological oscillatory coupling associated with prolonged, hypersynchronous neural spiking in synaptically connected cortex and expand the brain territory capable of generating IEDs. A similar relationship between IED-mediated oscillatory coupling and temporal organization of IEDs across brain regions was identified in human participants with refractory focal epilepsy. Spatiotemporally targeted closed-loop electrical stimulation triggered on hippocampal IED occurrence eliminated the abnormal cortical activity patterns, preventing the spread of the epileptic network and ameliorating long-term spatial memory deficits in rodents. These findings suggest that stimulation-based network interventions that normalize interictal dynamics may be an effective treatment of epilepsy and its comorbidities, with a low barrier to clinical translation.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.