Finite-PINN: A physics-informed neural network with finite geometric encoding for solid mechanics

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haolin Li , Yuyang Miao , Zahra Sharif Khodaei , M.H. Aliabadi
{"title":"Finite-PINN: A physics-informed neural network with finite geometric encoding for solid mechanics","authors":"Haolin Li ,&nbsp;Yuyang Miao ,&nbsp;Zahra Sharif Khodaei ,&nbsp;M.H. Aliabadi","doi":"10.1016/j.jmps.2025.106222","DOIUrl":null,"url":null,"abstract":"<div><div>PINN models have demonstrated capabilities in addressing fluid PDE problems, and their potential in solid mechanics is beginning to emerge. This study identifies two key challenges when using PINN to solve general solid mechanics problems. These challenges become evident when comparing the limitations of PINN with the well-established numerical methods commonly used in solid mechanics, such as the finite element method (FEM). Specifically: a) PINN models generate solutions over an infinite domain, which conflicts with the finite boundaries typical of most solid structures; and b) the solution space utilised by PINN is Euclidean, which is inadequate for addressing the complex geometries often present in solid structures.</div><div>This work presents a PINN architecture for general solid mechanics problems, referred to as the Finite-PINN model. The model is designed to effectively tackle two key challenges, while retaining as much of the original PINN framework as possible. To this end, the Finite-PINN incorporates finite geometric encoding into the neural network inputs, thereby transforming the solution space from a conventional Euclidean space into a hybrid Euclidean–topological space. The model is trained using both strong-form and weak-form loss formulations, enabling its application to a wide range of forward and inverse problems in solid mechanics For forward problems, the Finite-PINN model efficiently approximates solutions to solid mechanics problems when the geometric information of a given structure has been preprocessed. For inverse problems, it effectively reconstructs full-field solutions from very sparse observations by embedding both physical laws and geometric information within its architecture.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"203 ","pages":"Article 106222"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962500198X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PINN models have demonstrated capabilities in addressing fluid PDE problems, and their potential in solid mechanics is beginning to emerge. This study identifies two key challenges when using PINN to solve general solid mechanics problems. These challenges become evident when comparing the limitations of PINN with the well-established numerical methods commonly used in solid mechanics, such as the finite element method (FEM). Specifically: a) PINN models generate solutions over an infinite domain, which conflicts with the finite boundaries typical of most solid structures; and b) the solution space utilised by PINN is Euclidean, which is inadequate for addressing the complex geometries often present in solid structures.
This work presents a PINN architecture for general solid mechanics problems, referred to as the Finite-PINN model. The model is designed to effectively tackle two key challenges, while retaining as much of the original PINN framework as possible. To this end, the Finite-PINN incorporates finite geometric encoding into the neural network inputs, thereby transforming the solution space from a conventional Euclidean space into a hybrid Euclidean–topological space. The model is trained using both strong-form and weak-form loss formulations, enabling its application to a wide range of forward and inverse problems in solid mechanics For forward problems, the Finite-PINN model efficiently approximates solutions to solid mechanics problems when the geometric information of a given structure has been preprocessed. For inverse problems, it effectively reconstructs full-field solutions from very sparse observations by embedding both physical laws and geometric information within its architecture.
有限- pinn:具有有限几何编码的物理信息神经网络,用于固体力学
PINN模型已经证明了解决流体PDE问题的能力,并且它们在固体力学中的潜力正在开始显现。本研究确定了使用PINN解决一般固体力学问题时面临的两个关键挑战。当将PINN的局限性与固体力学中常用的成熟的数值方法(如有限元法)进行比较时,这些挑战变得明显。具体而言:a) PINN模型在无限域中生成解,这与大多数实体结构的有限边界相冲突;b) PINN使用的解空间是欧几里得的,这对于处理实体结构中经常出现的复杂几何形状是不够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信