Royal C. Ihuaenyi , Wei Li , Martin Z. Bazant , Juner Zhu
{"title":"Mechanics informatics: A paradigm for efficiently learning constitutive models","authors":"Royal C. Ihuaenyi , Wei Li , Martin Z. Bazant , Juner Zhu","doi":"10.1016/j.jmps.2025.106239","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and accurate learning of constitutive laws is crucial for accurately predicting the mechanical behavior of materials under complex loading conditions. Accurate model calibration hinges on a delicate interplay between the information embedded in experimental data and the parameters that define our constitutive models. The information encoded in the parameters of the constitutive model must be complemented by the information in the data used for calibration. This interplay raises fundamental questions: How can we quantify the information content of test data? How much information does a single test convey? Also, how much information is required to accurately learn a constitutive model? To address these questions, we introduce <em>mechanics informatics</em>, a paradigm for efficient and accurate constitutive model learning. At its core is the <em>stress state entropy</em>, a metric for quantifying the information content of experimental data. Using this framework, we analyzed specimen geometries with varying information content for learning an anisotropic inelastic law. Specimens with limited information enabled accurate identification of a few parameters sensitive to the information in the data. Furthermore, we optimized specimen design by incorporating stress state entropy into a Bayesian optimization scheme. This led to the design of cruciform specimens with maximized entropy for accurate parameter identification. Conversely, minimizing entropy in Peirs shear specimens yielded a uniform shear stress state, showcasing the framework’s flexibility in tailoring designs for specific experimental goals. Finally, we addressed experimental uncertainties, demonstrated the potential of transfer learning for replacing challenging testing protocols with simpler alternatives, and extension of the framework to different material laws.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"203 ","pages":"Article 106239"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625002157","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and accurate learning of constitutive laws is crucial for accurately predicting the mechanical behavior of materials under complex loading conditions. Accurate model calibration hinges on a delicate interplay between the information embedded in experimental data and the parameters that define our constitutive models. The information encoded in the parameters of the constitutive model must be complemented by the information in the data used for calibration. This interplay raises fundamental questions: How can we quantify the information content of test data? How much information does a single test convey? Also, how much information is required to accurately learn a constitutive model? To address these questions, we introduce mechanics informatics, a paradigm for efficient and accurate constitutive model learning. At its core is the stress state entropy, a metric for quantifying the information content of experimental data. Using this framework, we analyzed specimen geometries with varying information content for learning an anisotropic inelastic law. Specimens with limited information enabled accurate identification of a few parameters sensitive to the information in the data. Furthermore, we optimized specimen design by incorporating stress state entropy into a Bayesian optimization scheme. This led to the design of cruciform specimens with maximized entropy for accurate parameter identification. Conversely, minimizing entropy in Peirs shear specimens yielded a uniform shear stress state, showcasing the framework’s flexibility in tailoring designs for specific experimental goals. Finally, we addressed experimental uncertainties, demonstrated the potential of transfer learning for replacing challenging testing protocols with simpler alternatives, and extension of the framework to different material laws.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.