Gram‐Scale Green‐Synthesis of High Purity Pinacols and Amides by Continuous Tandem Photocatalysis via a Negative Carbon Emission Process

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao‐Liang Ma, Wen‐Xiong Shi, Song Guo, Qiu‐Ping Zhao, Wenbin Lin, Tong‐Bu Lu, Zhi‐Ming Zhang
{"title":"Gram‐Scale Green‐Synthesis of High Purity Pinacols and Amides by Continuous Tandem Photocatalysis via a Negative Carbon Emission Process","authors":"Xiao‐Liang Ma, Wen‐Xiong Shi, Song Guo, Qiu‐Ping Zhao, Wenbin Lin, Tong‐Bu Lu, Zhi‐Ming Zhang","doi":"10.1002/adma.202506133","DOIUrl":null,"url":null,"abstract":"Solar‐driven CO<jats:sub>2</jats:sub> reduction for practical applications confronts significant challenges, including the waste of oxidation power and the difficulty in isolating reduction products. Herein, a pre‐coordination restriction strategy is presented to hierarchically assemble CdS quantum dots (QDs), cobalt sites and Zr<jats:sub>6</jats:sub> clusters in one metal–organic framework (MOF), resulting in the CdS@PCN‐Co composite for simultaneous CO<jats:sub>2</jats:sub> photoreduction and C–C coupling. Impressively, the yields of CO and pinacols with CdS@PCN‐Co can reach 59.5 mmol·g⁻¹ (99.4% selectivity) and 56.2 mmol·g⁻¹ (95.3% selectivity), respectively, over six and seven times higher than those with the CdS/PCN‐Co mixture (9.8 mmol•g⁻¹ CO, 29.4% selectivity; 7.8 mmol•g⁻¹ pinacols, 22.7% selectivity). The superior catalytic performance of CdS@PCN‐Co can be ascribed to the synergy among encapsulated CdS QDs, Zr<jats:sub>6</jats:sub> clusters and PCN‐Co, where photogenerated electrons can efficiently transfer from CdS QDs to Co sites for selective CO generation while the remaining holes can oxidize the adsorbed 1‐phenylethanol over Zr<jats:sub>6</jats:sub> surface to facilitate C–C coupling. More impressively, the released CO can be immediately used for carbonylation photosynthesis by immobilizing CdS@PCN‐Co and Pd/PCN‐Zn in a continuous‐flow system with two reactors, which simultaneously achieves gram‐scale photosynthesis of high‐purity pinacols and amides by continuous tandem photocatalysis.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"16 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202506133","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar‐driven CO2 reduction for practical applications confronts significant challenges, including the waste of oxidation power and the difficulty in isolating reduction products. Herein, a pre‐coordination restriction strategy is presented to hierarchically assemble CdS quantum dots (QDs), cobalt sites and Zr6 clusters in one metal–organic framework (MOF), resulting in the CdS@PCN‐Co composite for simultaneous CO2 photoreduction and C–C coupling. Impressively, the yields of CO and pinacols with CdS@PCN‐Co can reach 59.5 mmol·g⁻¹ (99.4% selectivity) and 56.2 mmol·g⁻¹ (95.3% selectivity), respectively, over six and seven times higher than those with the CdS/PCN‐Co mixture (9.8 mmol•g⁻¹ CO, 29.4% selectivity; 7.8 mmol•g⁻¹ pinacols, 22.7% selectivity). The superior catalytic performance of CdS@PCN‐Co can be ascribed to the synergy among encapsulated CdS QDs, Zr6 clusters and PCN‐Co, where photogenerated electrons can efficiently transfer from CdS QDs to Co sites for selective CO generation while the remaining holes can oxidize the adsorbed 1‐phenylethanol over Zr6 surface to facilitate C–C coupling. More impressively, the released CO can be immediately used for carbonylation photosynthesis by immobilizing CdS@PCN‐Co and Pd/PCN‐Zn in a continuous‐flow system with two reactors, which simultaneously achieves gram‐scale photosynthesis of high‐purity pinacols and amides by continuous tandem photocatalysis.
克级绿色-负碳排放连续串联光催化合成高纯度蒎醇和酰胺
太阳能驱动的二氧化碳减排在实际应用中面临着重大挑战,包括氧化功率的浪费和减排产品的分离困难。本文提出了一种预配位限制策略,将CdS量子点(QDs)、钴位点和Zr6团簇分层组装在一个金属有机框架(MOF)中,从而得到CdS@PCN‐Co复合材料,用于同时进行CO2光还原和C-C耦合。令人印象深刻的是,CdS@PCN‐CO的CO和蒎醇的产率分别可以达到59.5 mmol·g⁻¹(99.4%的选择性)和56.2 mmol·g⁻¹(95.3%的选择性),比cd /PCN‐CO混合物(9.8 mmol·g⁻¹CO, 29.4%的选择性)高6倍和7倍以上;7.8 mmol•g毒血症(22.7%选择性)。CdS@PCN‐Co的优异催化性能可归因于封装的CdS量子点、Zr6簇和PCN‐Co之间的协同作用,其中光生成的电子可以有效地从CdS量子点转移到Co位点以选择性地生成Co,而剩余的空穴可以氧化吸附在Zr6表面的1‐苯乙醇,从而促进C-C耦合。更令人印象深刻的是,通过在两个反应器的连续流动系统中固定CdS@PCN‐CO和Pd/PCN‐Zn,释放的CO可以立即用于羰基化光合作用,同时通过连续串联光催化实现高纯度蒎醇和酰胺的克级光合作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信