Kyu Tae Kim, Jae‐Seung Kim, Ki Heon Baeck, Jong Seok Kim, Juhyoun Park, Seongil Bong, Young Joon Park, Yong Bae Song, Changhyun Park, Soon‐Jae Jung, Hyun‐Wook Lee, Kyulin Lee, Jay Hyok Song, Soonrewl Lee, Dong‐Hwa Seo, Yoon Seok Jung
{"title":"Surface Fluorination Shielding of Sulfide Solid Electrolytes for Enhanced Electrochemical Stability in All‐Solid‐State Batteries","authors":"Kyu Tae Kim, Jae‐Seung Kim, Ki Heon Baeck, Jong Seok Kim, Juhyoun Park, Seongil Bong, Young Joon Park, Yong Bae Song, Changhyun Park, Soon‐Jae Jung, Hyun‐Wook Lee, Kyulin Lee, Jay Hyok Song, Soonrewl Lee, Dong‐Hwa Seo, Yoon Seok Jung","doi":"10.1002/adma.202416816","DOIUrl":null,"url":null,"abstract":"Despite their high Li<jats:sup>+</jats:sup> conductivity and deformability, sulfide solid electrolytes suffer from limited electrochemical stability, which prevents all‐solid‐state batteries (ASSBs) from reaching their full performance potential. Herein, a facile surface fluorination strategy is presented for Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl using XeF<jats:sub>2</jats:sub> as a solid‐state fluorinating agent, enabling a scalable dry process at moderate temperatures. An ≈37.3 nm‐thick uniform fluorinated layer is coated on an Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl surface, preserving 82.8% of the initial Li<jats:sup>+</jats:sup> conductivity (from 2.9 × 10⁻<jats:sup>3</jats:sup> only to 2.4 × 10⁻<jats:sup>3</jats:sup> S cm⁻¹ at 30 °C). The underlying fluorination mechanism, deduced through systematic investigations using X‐ray photoelectron spectroscopy, X‐ray Rietveld refinement, nuclear magnetic resonance, and density functional theory calculations, involves the formation of surface oxidative byproducts and F substitution within the lattice. When applied to LiNi<jats:sub>0.90</jats:sub>Co<jats:sub>0.05</jats:sub>Mn<jats:sub>0.05</jats:sub>O<jats:sub>2</jats:sub> electrodes in LiNi<jats:sub>0.90</jats:sub>Co<jats:sub>0.05</jats:sub>Mn<jats:sub>0.05</jats:sub>O<jats:sub>2</jats:sub>||(Li‐In) half cells at 30 °C, the fluorinated Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl substantially improves the electrochemical performance, delivering superior discharge capacities (e.g., 186.9 vs 173.6 mA h g<jats:sup>−1</jats:sup> at 0.33C), capacity retention, and safety characteristics compared to unmodified Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl. This enhancement is attributed to the formation of a robust fluorinated cathode electrolyte interphase that mitigates Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl oxidation. Finally, the stable operation of a pouch‐type LiNi<jats:sub>0.90</jats:sub>Co<jats:sub>0.05</jats:sub>Mn<jats:sub>0.05</jats:sub>O<jats:sub>2</jats:sub>||Li ASSB is demonstrated, highlighting the scalability of the proposed approach.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"91 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416816","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their high Li+ conductivity and deformability, sulfide solid electrolytes suffer from limited electrochemical stability, which prevents all‐solid‐state batteries (ASSBs) from reaching their full performance potential. Herein, a facile surface fluorination strategy is presented for Li6PS5Cl using XeF2 as a solid‐state fluorinating agent, enabling a scalable dry process at moderate temperatures. An ≈37.3 nm‐thick uniform fluorinated layer is coated on an Li6PS5Cl surface, preserving 82.8% of the initial Li+ conductivity (from 2.9 × 10⁻3 only to 2.4 × 10⁻3 S cm⁻¹ at 30 °C). The underlying fluorination mechanism, deduced through systematic investigations using X‐ray photoelectron spectroscopy, X‐ray Rietveld refinement, nuclear magnetic resonance, and density functional theory calculations, involves the formation of surface oxidative byproducts and F substitution within the lattice. When applied to LiNi0.90Co0.05Mn0.05O2 electrodes in LiNi0.90Co0.05Mn0.05O2||(Li‐In) half cells at 30 °C, the fluorinated Li6PS5Cl substantially improves the electrochemical performance, delivering superior discharge capacities (e.g., 186.9 vs 173.6 mA h g−1 at 0.33C), capacity retention, and safety characteristics compared to unmodified Li6PS5Cl. This enhancement is attributed to the formation of a robust fluorinated cathode electrolyte interphase that mitigates Li6PS5Cl oxidation. Finally, the stable operation of a pouch‐type LiNi0.90Co0.05Mn0.05O2||Li ASSB is demonstrated, highlighting the scalability of the proposed approach.
尽管硫化物固体电解质具有高的Li+导电性和可变形性,但其电化学稳定性有限,这阻碍了全固态电池(assb)发挥其全部性能潜力。本文提出了一种简单的表面氟化策略,使用XeF2作为固态氟化剂,在中等温度下实现可扩展的干燥工艺。在Li6PS5Cl表面涂上一层≈37.3 nm厚的均匀氟化层,保留了初始Li+电导率的82.8%(在30°C时从2.9 × 10⁻3到2.4 × 10 S cm⁻¹)。通过使用X射线光电子能谱、X射线Rietveld精化、核磁共振和密度泛函理论计算的系统研究,推断出潜在的氟化机制涉及表面氧化副产物的形成和晶格内的F取代。当应用于LiNi0.90Co0.05Mn0.05O2 (Li‐in)半电池中的LiNi0.90Co0.05Mn0.05O2||(Li‐in)电极时,氟化的Li6PS5Cl大大提高了电化学性能,与未改性的Li6PS5Cl相比,提供了更好的放电容量(例如,在0.33C时为186.9 vs 173.6 mA h g - 1),容量保持和安全特性。这种增强是由于形成了一个强大的氟化阴极电解质界面,减轻了Li6PS5Cl氧化。最后,演示了袋型LiNi0.90Co0.05Mn0.05O2||Li ASSB的稳定运行,突出了该方法的可扩展性。
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.