Enzo Bresteau, Eve E. Suva, Christopher Revell, Osama A. Hassan, Aline Grata, Jennifer Sheridan, Jennifer Mitchell, Constadina Arvanitis, Farida Korobova, Sarah Woolner, Oliver E. Jensen, Brian Mitchell
{"title":"Apical size reduction by macropinocytosis alleviates tissue crowding","authors":"Enzo Bresteau, Eve E. Suva, Christopher Revell, Osama A. Hassan, Aline Grata, Jennifer Sheridan, Jennifer Mitchell, Constadina Arvanitis, Farida Korobova, Sarah Woolner, Oliver E. Jensen, Brian Mitchell","doi":"10.1038/s41467-025-60724-2","DOIUrl":null,"url":null,"abstract":"<p>Tissue crowding represents a critical challenge to epithelial tissues, which often respond via the irreversible process of live cell extrusion. We report that apical size reduction via macropinocytosis serves as a malleable and less destructive form of tissue remodeling that can alleviate the need for cell loss. We find that macropinocytosis is triggered by tissue crowding via mechanosensory signaling, leading to substantial internalization of apical membrane. This drives a reduction in apical surface which alleviates crowding. We report that this mechanism regulates the long-term organization of the developing epithelium and controls the timing of proliferation-induced cell extrusion. Additionally, we observe a wave of macropinocytosis in response to acute external compression. In both scenarios, inhibiting macropinocytosis induces a dramatic increase in cell extrusion suggesting cooperation between cell extrusion and macropinocytosis in response to both developmental and external compression. Our findings implicate macropinocytosis as an important regulator of dynamic epithelial remodeling.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"7 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60724-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue crowding represents a critical challenge to epithelial tissues, which often respond via the irreversible process of live cell extrusion. We report that apical size reduction via macropinocytosis serves as a malleable and less destructive form of tissue remodeling that can alleviate the need for cell loss. We find that macropinocytosis is triggered by tissue crowding via mechanosensory signaling, leading to substantial internalization of apical membrane. This drives a reduction in apical surface which alleviates crowding. We report that this mechanism regulates the long-term organization of the developing epithelium and controls the timing of proliferation-induced cell extrusion. Additionally, we observe a wave of macropinocytosis in response to acute external compression. In both scenarios, inhibiting macropinocytosis induces a dramatic increase in cell extrusion suggesting cooperation between cell extrusion and macropinocytosis in response to both developmental and external compression. Our findings implicate macropinocytosis as an important regulator of dynamic epithelial remodeling.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.