Sub-2-nm-droplet-driven growth of amorphous metal chalcogenides approaching the single-layer limit

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zude Shi, Wen Qin, Zhili Hu, Mingyu Ma, Hong Liu, Zhiwen Shu, Yubing Jiang, Hang Xia, Wenyan Shi, Chao Yue Zhang, Xiaoru Sang, Cui Guo, Yunxin Li, Chengzhi Liu, Chengshi Gong, Hong Wang, Song Liu, Levente Tapasztó, Caitian Gao, Fucai Liu, Pengyi Tang, Yuan Liu, Huigao Duan, Erqing Xie, Zhuhua Zhang, Zheng Liu, Yongmin He
{"title":"Sub-2-nm-droplet-driven growth of amorphous metal chalcogenides approaching the single-layer limit","authors":"Zude Shi, Wen Qin, Zhili Hu, Mingyu Ma, Hong Liu, Zhiwen Shu, Yubing Jiang, Hang Xia, Wenyan Shi, Chao Yue Zhang, Xiaoru Sang, Cui Guo, Yunxin Li, Chengzhi Liu, Chengshi Gong, Hong Wang, Song Liu, Levente Tapasztó, Caitian Gao, Fucai Liu, Pengyi Tang, Yuan Liu, Huigao Duan, Erqing Xie, Zhuhua Zhang, Zheng Liu, Yongmin He","doi":"10.1038/s41563-025-02273-z","DOIUrl":null,"url":null,"abstract":"<p>Atom-thin amorphous materials (for example, amorphous monolayer carbon) offer a designable material platform for fundamental studies of the disorder system, as well as the development of various applications. However, their growth at a single layer remains challenging since their thermodynamically favourable grains are neither two dimensional nor layered. Here we demonstrate the growth of 1-nm-thick, amorphous metal chalcogenides at a wafer scale using a nanodroplet-driven nanoribbon-to-film strategy. Metal clusters are initially liquified into 1–2 nm droplets at 120 °C, and they then orchestrate the growth of amorphous single-layer nanoribbons, which eventually merge into a continuous centimetre-scale film. Phase-field simulations, combined with our characterizations, suggest a non-equilibrium kinetic growth mechanism, which can be applicable to various films, for example, PtSe<sub><i>x</i></sub>, IrSe<sub><i>x</i></sub>, PdSe<sub><i>x</i></sub> and RhSe<sub><i>x</i></sub>. The synthesized films exhibit a range of unique properties, including tunable conductivity through disorder modulation, high work functions and remarkable catalytic activity, making them promising candidates for hole-injection contacts in p-type transistors and hydrogen production applications. This work opens a pathway for the synthesis of non-layered materials approaching the single-layer limit.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"65 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02273-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Atom-thin amorphous materials (for example, amorphous monolayer carbon) offer a designable material platform for fundamental studies of the disorder system, as well as the development of various applications. However, their growth at a single layer remains challenging since their thermodynamically favourable grains are neither two dimensional nor layered. Here we demonstrate the growth of 1-nm-thick, amorphous metal chalcogenides at a wafer scale using a nanodroplet-driven nanoribbon-to-film strategy. Metal clusters are initially liquified into 1–2 nm droplets at 120 °C, and they then orchestrate the growth of amorphous single-layer nanoribbons, which eventually merge into a continuous centimetre-scale film. Phase-field simulations, combined with our characterizations, suggest a non-equilibrium kinetic growth mechanism, which can be applicable to various films, for example, PtSex, IrSex, PdSex and RhSex. The synthesized films exhibit a range of unique properties, including tunable conductivity through disorder modulation, high work functions and remarkable catalytic activity, making them promising candidates for hole-injection contacts in p-type transistors and hydrogen production applications. This work opens a pathway for the synthesis of non-layered materials approaching the single-layer limit.

Abstract Image

亚2纳米液滴驱动的非晶金属硫族化合物生长接近单层极限
原子薄非晶材料(例如,非晶单层碳)为无序系统的基础研究以及各种应用的发展提供了一个可设计的材料平台。然而,它们在单层中的生长仍然具有挑战性,因为它们的热力学有利的晶粒既不是二维的,也不是分层的。在这里,我们展示了使用纳米液滴驱动的纳米带到薄膜策略在晶圆尺度上生长1纳米厚的非晶金属硫族化合物。金属团簇最初在120°C下液化成1-2 nm的液滴,然后它们协调无定形单层纳米带的生长,最终融合成连续的厘米级薄膜。相场模拟与我们的表征相结合,表明了一种非平衡动力学生长机制,可以适用于各种薄膜,例如PtSex, IrSex, PdSex和RhSex。合成的薄膜表现出一系列独特的性能,包括通过无序调制可调谐的电导率,高功函数和显著的催化活性,使其成为p型晶体管和制氢应用中空穴注入触点的有希望的候选者。这项工作为接近单层极限的非层状材料的合成开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信