Inhibition of the ATP synthase c subunit ameliorates HDM/LPS-induced inflammatory responses in asthmatic bronchial epithelial cells by blocking the mPTP-mtDNA-cGAS-STING axis.
{"title":"Inhibition of the ATP synthase c subunit ameliorates HDM/LPS-induced inflammatory responses in asthmatic bronchial epithelial cells by blocking the mPTP-mtDNA-cGAS-STING axis.","authors":"Decai Wang, Chao Liu, Chen Bao, Jiannan Hu, Ziling Li, Xinyue Ma, Yunfei Zhu, Shuyun Xu","doi":"10.1186/s12931-025-03299-2","DOIUrl":null,"url":null,"abstract":"<p><p>The ATP synthase c subunit (c subunit) constitutes the mitochondrial permeability transition pore (mPTP). The extended opening of the mPTP is crucial in the development of various human illnesses. Nevertheless, it remains unclear whether the c subunit regulates the prolonged opening of the mPTP to attenuate inflammatory responses in asthma. This study sought to clarify the impact of the c subunit on inflammatory responses and to examine the therapeutic effects of 1,3,8-triazaspiro [4.5] decane derivatives (PP10), a c subunit inhibitor, in human bronchial epithelial (HBE) cells induced by house dust mite (HDM) and lipopolysaccharide (LPS), as well as in a mouse model. The findings indicated that the expression of the c subunit is elevated in asthmatic patients, HDM/LPS-induced HBE cells, and asthmatic mice. The inhibition of the c subunit by PP10 alleviated the prolonged opening of mPTP, then blocked the release of mitochondrial DNA (mtDNA) and cyclic GMP-AMP synthase (cGAS)-interferon response cGAMP interactor (STING) pathway activation in HDM/LPS-induced HBE cells. Furthermore, PP10 decreased the secretion of inflammatory cytokines and ameliorated airway inflammation in HDM/LPS-induced HBE cells and asthmatic animals, respectively. The data collectively suggest that the c subunit triggers an inflammatory response by promoting the sustained opening of mPTP, leading to the activation of the mtDNA-GAS-STING pathway in HDM/LPS-induced HBE cells. Inhibition of the c-subunit attenuates inflammatory responses in HDM/LPS-induced cells or mouse models. Clinical trial number Not applicable.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"219"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03299-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The ATP synthase c subunit (c subunit) constitutes the mitochondrial permeability transition pore (mPTP). The extended opening of the mPTP is crucial in the development of various human illnesses. Nevertheless, it remains unclear whether the c subunit regulates the prolonged opening of the mPTP to attenuate inflammatory responses in asthma. This study sought to clarify the impact of the c subunit on inflammatory responses and to examine the therapeutic effects of 1,3,8-triazaspiro [4.5] decane derivatives (PP10), a c subunit inhibitor, in human bronchial epithelial (HBE) cells induced by house dust mite (HDM) and lipopolysaccharide (LPS), as well as in a mouse model. The findings indicated that the expression of the c subunit is elevated in asthmatic patients, HDM/LPS-induced HBE cells, and asthmatic mice. The inhibition of the c subunit by PP10 alleviated the prolonged opening of mPTP, then blocked the release of mitochondrial DNA (mtDNA) and cyclic GMP-AMP synthase (cGAS)-interferon response cGAMP interactor (STING) pathway activation in HDM/LPS-induced HBE cells. Furthermore, PP10 decreased the secretion of inflammatory cytokines and ameliorated airway inflammation in HDM/LPS-induced HBE cells and asthmatic animals, respectively. The data collectively suggest that the c subunit triggers an inflammatory response by promoting the sustained opening of mPTP, leading to the activation of the mtDNA-GAS-STING pathway in HDM/LPS-induced HBE cells. Inhibition of the c-subunit attenuates inflammatory responses in HDM/LPS-induced cells or mouse models. Clinical trial number Not applicable.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.