{"title":"Possible Acquisition and Molecular Evolution of vpu Genes Inferred from Comprehensive Sequence Analysis of Human and Simian Immunodeficiency Viruses.","authors":"Miu Naruki, Motofumi Saito, Masako Nomaguchi, Akio Kanai","doi":"10.1007/s00239-025-10256-6","DOIUrl":null,"url":null,"abstract":"<p><p>Vpu, an accessory protein of human immunodeficiency virus-1 (HIV-1), plays a crucial role in viral particle production and significantly contributes to HIV virulence. However, the evolution of the vpu gene remains poorly understood. We conducted a computational analysis of approximately 39,000 simian immunodeficiency virus (SIV) and HIV sequences, focusing on 141 representative Vpu proteins. Phylogenetic analysis classified the SIV and HIV strains into four major types based on their Vpu proteins: Vpu-type 1 (ancestral, found in SIVs such as SIVmon and SIVgsn), Vpu-type 2 (SIVgor and HIV-1 group O), Vpu-type 3 (SIVcpz), and Vpu-type 4 (HIV-1 group M and N). Notably, Vpu-type 1 exhibited variability in gene length, genome length, and the overlap between vpu and env compared with other Vpu-types. A phylogenetic tree was constructed using 426 nucleotide sequences from HIV-1, HIV-2, and SIVs focusing on the region between the pol and env genes. Vpu-type 1 was closely clustered with SIVasc and SIVsyk, lacking both vpu and vpx. The similarities observed between vpu and genes such as vpr and env suggest that vpu originated within the SIV genome. In addition, a phylogenetic tree constructed from 252 Vpu-type 4a sequences from the HIV pandemic strain and 135 sequences of circulating recombinant forms of HIV-1 revealed 18 distinct protein subtypes, exceeding the number of previously recognized subtypes. The systematic analysis of the sequences from large datasets has enabled a detailed characterization of the transition states of vpu, enhancing our understanding of the processes driving viral diversity.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10256-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vpu, an accessory protein of human immunodeficiency virus-1 (HIV-1), plays a crucial role in viral particle production and significantly contributes to HIV virulence. However, the evolution of the vpu gene remains poorly understood. We conducted a computational analysis of approximately 39,000 simian immunodeficiency virus (SIV) and HIV sequences, focusing on 141 representative Vpu proteins. Phylogenetic analysis classified the SIV and HIV strains into four major types based on their Vpu proteins: Vpu-type 1 (ancestral, found in SIVs such as SIVmon and SIVgsn), Vpu-type 2 (SIVgor and HIV-1 group O), Vpu-type 3 (SIVcpz), and Vpu-type 4 (HIV-1 group M and N). Notably, Vpu-type 1 exhibited variability in gene length, genome length, and the overlap between vpu and env compared with other Vpu-types. A phylogenetic tree was constructed using 426 nucleotide sequences from HIV-1, HIV-2, and SIVs focusing on the region between the pol and env genes. Vpu-type 1 was closely clustered with SIVasc and SIVsyk, lacking both vpu and vpx. The similarities observed between vpu and genes such as vpr and env suggest that vpu originated within the SIV genome. In addition, a phylogenetic tree constructed from 252 Vpu-type 4a sequences from the HIV pandemic strain and 135 sequences of circulating recombinant forms of HIV-1 revealed 18 distinct protein subtypes, exceeding the number of previously recognized subtypes. The systematic analysis of the sequences from large datasets has enabled a detailed characterization of the transition states of vpu, enhancing our understanding of the processes driving viral diversity.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.