Zia Ur Rehman, Ikenna Obi, Aftab Nadeem, Nicole Tegtmeyer, Steffen Backert, Anna Arnqvist
{"title":"Bacterial Extracellular Vesicles Exploit Filopodial Surfing and Retraction Mechanisms to Reach the Host Cell Body in an Actin-Dependent Manner","authors":"Zia Ur Rehman, Ikenna Obi, Aftab Nadeem, Nicole Tegtmeyer, Steffen Backert, Anna Arnqvist","doi":"10.1002/jev2.70107","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles derived from gram-negative bacteria are nano-sized particles of different size and origin released by these microbes and are collectively called bacterial extracellular vesicles (BEVs). These BEVs may serve as vehicles for delivering bacterial molecules to eukaryotic host cells. Depending on the bacterial species, BEVs elicit various host cellular and immunomodulatory responses, often aiding bacterial survival and communication. Early events in the initial interaction between BEVs and the host cell, as well as how BEVs reach the cell body, remain unexplored. In this study, we describe the interaction of BEVs with actin-rich cellular extensions, including filopodia and retraction fibres, which extend from the host cell surface. Using microscopy-based tracking at the single cell level, BEVs were shown to exploit cellular extensions at the cell periphery to reach the main cell body, either by hijacking retracted extensions or by surfing along these extensions in an actin-dependent manner. BEVs bind to the outer surface of the extensions, but no internalization occurs at this stage. Instead, they serve as transport for BEVs to the main cell body, where endocytosis takes place. Importantly, this process appears to be a general phenomenon for BEVs across different bacterial species and cell origins.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 6","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70107","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles derived from gram-negative bacteria are nano-sized particles of different size and origin released by these microbes and are collectively called bacterial extracellular vesicles (BEVs). These BEVs may serve as vehicles for delivering bacterial molecules to eukaryotic host cells. Depending on the bacterial species, BEVs elicit various host cellular and immunomodulatory responses, often aiding bacterial survival and communication. Early events in the initial interaction between BEVs and the host cell, as well as how BEVs reach the cell body, remain unexplored. In this study, we describe the interaction of BEVs with actin-rich cellular extensions, including filopodia and retraction fibres, which extend from the host cell surface. Using microscopy-based tracking at the single cell level, BEVs were shown to exploit cellular extensions at the cell periphery to reach the main cell body, either by hijacking retracted extensions or by surfing along these extensions in an actin-dependent manner. BEVs bind to the outer surface of the extensions, but no internalization occurs at this stage. Instead, they serve as transport for BEVs to the main cell body, where endocytosis takes place. Importantly, this process appears to be a general phenomenon for BEVs across different bacterial species and cell origins.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.