Artificial Solid-Electrolyte Interphase with PVDF-ZnF2 Double-Layer Structures Enhancing Electrochemical Performance of Sodium Metal Batteries

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY
Kaichen Yu, Jinbiao Chen, Zhifeng Xiao, Yuqing Yang, Yanpeng Fu, Abdullah N. Alodhayb, Jie Li, Chunsheng Li, Yan Sun, Zhicong Shi
{"title":"Artificial Solid-Electrolyte Interphase with PVDF-ZnF2 Double-Layer Structures Enhancing Electrochemical Performance of Sodium Metal Batteries","authors":"Kaichen Yu,&nbsp;Jinbiao Chen,&nbsp;Zhifeng Xiao,&nbsp;Yuqing Yang,&nbsp;Yanpeng Fu,&nbsp;Abdullah N. Alodhayb,&nbsp;Jie Li,&nbsp;Chunsheng Li,&nbsp;Yan Sun,&nbsp;Zhicong Shi","doi":"10.1002/batt.202400689","DOIUrl":null,"url":null,"abstract":"<p>Sodium metal batteries (SMBs) have attracted significant attention due to their high theoretical capacity and abundant resources. However, commercialization for this cell is challenged by the high reactivity of sodium metal, leading to detrimental side reactions with electrolytes, dendritic growth, and severe volume changes over charging/discharging cycles. These issues shorten the cycle life, reduce efficiency, and increase the risk of internal short circuits and thermal runaway. A stable solid electrolyte interphase (SEI) is key to addressing these challenges by preventing dendrite growth, homogenizing sodium ion transport, and maintaining chemical stability. This study investigates an artificial SEI(ASEI) composed of polyvinylidene fluoride (PVDF) and ZnF<sub>2</sub>, which forms a durable organic-inorganic double-layer structure. The outer organic PVDF layer enhances mechanical strength, while the inner inorganic ZnF<sub>2</sub> layer improves sodium ion flux, preventing dendritic growth. The ASEI significantly extends cell life and enhance electrochemical performances. The NVP||50 μL −4 wt.%+100 μL −8 wt.% PVDF-ZnF<sub>2</sub>/Na cell demonstrates stable cycling for over 3000 cycles. This novel ASEI design offers promising potential for improving the energy storage properties and safety of sodium metal batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 6","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400689","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium metal batteries (SMBs) have attracted significant attention due to their high theoretical capacity and abundant resources. However, commercialization for this cell is challenged by the high reactivity of sodium metal, leading to detrimental side reactions with electrolytes, dendritic growth, and severe volume changes over charging/discharging cycles. These issues shorten the cycle life, reduce efficiency, and increase the risk of internal short circuits and thermal runaway. A stable solid electrolyte interphase (SEI) is key to addressing these challenges by preventing dendrite growth, homogenizing sodium ion transport, and maintaining chemical stability. This study investigates an artificial SEI(ASEI) composed of polyvinylidene fluoride (PVDF) and ZnF2, which forms a durable organic-inorganic double-layer structure. The outer organic PVDF layer enhances mechanical strength, while the inner inorganic ZnF2 layer improves sodium ion flux, preventing dendritic growth. The ASEI significantly extends cell life and enhance electrochemical performances. The NVP||50 μL −4 wt.%+100 μL −8 wt.% PVDF-ZnF2/Na cell demonstrates stable cycling for over 3000 cycles. This novel ASEI design offers promising potential for improving the energy storage properties and safety of sodium metal batteries.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

PVDF-ZnF2双层结构人工固电解质界面提高钠金属电池电化学性能
钠金属电池因其较高的理论容量和丰富的资源而备受关注。然而,这种电池的商业化受到金属钠的高反应性的挑战,导致与电解质的有害副反应,枝晶生长,以及在充放电循环中严重的体积变化。这些问题缩短了循环寿命,降低了效率,增加了内部短路和热失控的风险。稳定的固体电解质间相(SEI)是解决这些挑战的关键,可以防止枝晶生长,均匀化钠离子运输,并保持化学稳定性。本文研究了一种由聚偏氟乙烯(PVDF)和ZnF2组成的人工SEI(ASEI),它形成了一种耐用的有机-无机双层结构。外部有机PVDF层提高了机械强度,内部无机ZnF2层提高了钠离子通量,阻止了枝晶的生长。ASEI显著延长了电池寿命,提高了电化学性能。NVP||50 μL−4 wt。%+100 μL−8 wt。% PVDF-ZnF2/Na电池可稳定循环3000次以上。这种新颖的ASEI设计为提高钠金属电池的储能性能和安全性提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信