{"title":"Hydration State and Updip Fluid Migration in the Slab Mantle","authors":"Nestor G. Cerpa, Ikuko Wada","doi":"10.1029/2024JB030609","DOIUrl":null,"url":null,"abstract":"<p>Fluid production from dehydration reactions and fluid migration in the subducting slab impact various subduction processes, including intraslab and megathrust earthquakes, episodic slip and tremor, mantle wedge metasomatism, and arc-magma genesis. Quantifying those processes requires a good knowledge of the location and amount of fluid release from the slab and eventual outflux at the top of the slab. Compaction-pressure gradients induced by the dehydration reactions could drive fluid flow in the slab, even in the updip direction, but how the initial hydration in the oceanic mantle prior to subduction impacts the fluid flow has not been investigated. Here, we use a 2-D two-phase flow model to investigate this effect under various initial slab-mantle hydration states and slab thermal conditions, both of which impact the depth extent of the stability of hydrous minerals. We focus on the lateral shift between the site of dehydration reactions and the location of fluid outflux at the top of the slab due to intraslab-updip migration. Our results indicate that major updip fluid pathways form along the antigorite and chlorite dehydration fronts sub-parallel to the slab surface. This, in turn, promotes fluid outflux at the slab surface as shallow as 30–40 km depths. This mechanism is more likely in young slabs (<∼30 Ma) as its warm condition results in a relatively thin (<∼20-km thick) stability zones of hydrous phases in the incoming oceanic mantle, which leads to the formation of the slab-parallel dehydration fronts and updip fluid migration.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030609","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid production from dehydration reactions and fluid migration in the subducting slab impact various subduction processes, including intraslab and megathrust earthquakes, episodic slip and tremor, mantle wedge metasomatism, and arc-magma genesis. Quantifying those processes requires a good knowledge of the location and amount of fluid release from the slab and eventual outflux at the top of the slab. Compaction-pressure gradients induced by the dehydration reactions could drive fluid flow in the slab, even in the updip direction, but how the initial hydration in the oceanic mantle prior to subduction impacts the fluid flow has not been investigated. Here, we use a 2-D two-phase flow model to investigate this effect under various initial slab-mantle hydration states and slab thermal conditions, both of which impact the depth extent of the stability of hydrous minerals. We focus on the lateral shift between the site of dehydration reactions and the location of fluid outflux at the top of the slab due to intraslab-updip migration. Our results indicate that major updip fluid pathways form along the antigorite and chlorite dehydration fronts sub-parallel to the slab surface. This, in turn, promotes fluid outflux at the slab surface as shallow as 30–40 km depths. This mechanism is more likely in young slabs (<∼30 Ma) as its warm condition results in a relatively thin (<∼20-km thick) stability zones of hydrous phases in the incoming oceanic mantle, which leads to the formation of the slab-parallel dehydration fronts and updip fluid migration.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.