Multifunctional Biomimetic Nanotherapeutics for Anti-Oxidative and Anti-Inflammatory Synergistic Therapy of Corneal Neovascularization

IF 13.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shundong Cai, Mengdie Li, Jinfa Ye, Mingyou Zhang, Jingbin Zhuang, Yuhang Cheng, Hongjin Li, Lang Ke, Xingyuan Wei, Yun Han, Huanhuan Liu, Gang Liu, Chengchao Chu
{"title":"Multifunctional Biomimetic Nanotherapeutics for Anti-Oxidative and Anti-Inflammatory Synergistic Therapy of Corneal Neovascularization","authors":"Shundong Cai,&nbsp;Mengdie Li,&nbsp;Jinfa Ye,&nbsp;Mingyou Zhang,&nbsp;Jingbin Zhuang,&nbsp;Yuhang Cheng,&nbsp;Hongjin Li,&nbsp;Lang Ke,&nbsp;Xingyuan Wei,&nbsp;Yun Han,&nbsp;Huanhuan Liu,&nbsp;Gang Liu,&nbsp;Chengchao Chu","doi":"10.1002/agt2.70034","DOIUrl":null,"url":null,"abstract":"<p>Corneal neovascularization (CNV) is a debilitating ocular surface disease that severely compromises visual function and carries a significant risk of vision loss. Despite its clinical impact, the development of effective and safe pharmacological treatments for CNV remains an unmet medical need. The pathogenesis of CNV is largely driven by inflammation and excessive oxidative stress. In this study, we introduce a novel nanotherapeutic strategy utilizing vanadium carbide quantum dots (V<sub>2</sub>C QDs) with intrinsic nanozyme properties, co-encapsulated with a plasmid encoding interleukin-10 (IL-10) within a biomimetic metal-organic framework (MOF) for the treatment of CNV. To enhance targeting and biocompatibility, the nanoparticles (NPs) are further coated with mesenchymal stem cell (MSC)-derived cell membrane vesicles (CMVs), yielding the final nanomedicine designated as MOF-V<sub>2</sub>C-Plasmid@CMVs (MVPC). In vitro studies demonstrate that MVPC NPs effectively scavenge reactive oxygen species (ROS) induced by <i>tert</i>-butyl hydroperoxide (tBOOH), mitigating oxidative stress. Moreover, the successful delivery and expression of the IL-10 plasmid in RAW264.7 cells result in elevated IL-10 secretion, showcasing robust anti-inflammatory activity. The CMV coating facilitates targeted delivery, enabling the efficient accumulation of MVPC NPs in the CNV region following topical administration via eye drops. In vivo experiments in CNV model rats reveal that MVPC nanotherapeutics significantly suppress neovascularization without inducing adverse effects. Collectively, this study provides proof of concept for a multifunctional nanotherapeutic platform targeting CNV, offering a promising and clinically translatable approach for the treatment of this challenging ocular disease.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 6","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Corneal neovascularization (CNV) is a debilitating ocular surface disease that severely compromises visual function and carries a significant risk of vision loss. Despite its clinical impact, the development of effective and safe pharmacological treatments for CNV remains an unmet medical need. The pathogenesis of CNV is largely driven by inflammation and excessive oxidative stress. In this study, we introduce a novel nanotherapeutic strategy utilizing vanadium carbide quantum dots (V2C QDs) with intrinsic nanozyme properties, co-encapsulated with a plasmid encoding interleukin-10 (IL-10) within a biomimetic metal-organic framework (MOF) for the treatment of CNV. To enhance targeting and biocompatibility, the nanoparticles (NPs) are further coated with mesenchymal stem cell (MSC)-derived cell membrane vesicles (CMVs), yielding the final nanomedicine designated as MOF-V2C-Plasmid@CMVs (MVPC). In vitro studies demonstrate that MVPC NPs effectively scavenge reactive oxygen species (ROS) induced by tert-butyl hydroperoxide (tBOOH), mitigating oxidative stress. Moreover, the successful delivery and expression of the IL-10 plasmid in RAW264.7 cells result in elevated IL-10 secretion, showcasing robust anti-inflammatory activity. The CMV coating facilitates targeted delivery, enabling the efficient accumulation of MVPC NPs in the CNV region following topical administration via eye drops. In vivo experiments in CNV model rats reveal that MVPC nanotherapeutics significantly suppress neovascularization without inducing adverse effects. Collectively, this study provides proof of concept for a multifunctional nanotherapeutic platform targeting CNV, offering a promising and clinically translatable approach for the treatment of this challenging ocular disease.

Abstract Image

抗氧化抗炎协同治疗角膜新生血管的多功能仿生纳米疗法
角膜新生血管(CNV)是一种使人衰弱的眼表疾病,严重损害视觉功能并具有显著的视力丧失风险。尽管有临床影响,但开发有效和安全的CNV药物治疗仍然是一个未满足的医疗需求。CNV的发病机制主要由炎症和过度氧化应激驱动。在这项研究中,我们介绍了一种新的纳米治疗策略,利用具有固有纳米酶特性的碳化钒量子点(V2C量子点),在仿生金属有机框架(MOF)内与编码白介素-10 (IL-10)的质粒共包被,用于治疗CNV。为了增强靶向性和生物相容性,纳米颗粒(NPs)进一步被间充质干细胞(MSC)衍生的细胞膜囊泡(CMVs)包裹,从而产生最终的纳米药物MOF-V2C-Plasmid@CMVs (MVPC)。体外研究表明,MVPC NPs能有效清除过氧化叔丁基(tBOOH)诱导的活性氧(ROS),减轻氧化应激。此外,IL-10质粒在RAW264.7细胞中的成功传递和表达导致IL-10分泌增加,显示出强大的抗炎活性。CMV涂层有助于靶向递送,通过滴眼液局部给药后,使MVPC NPs在CNV区域有效积累。CNV模型大鼠的体内实验表明,MVPC纳米疗法可显著抑制新生血管的形成,且无不良反应。总的来说,这项研究为靶向CNV的多功能纳米治疗平台提供了概念证明,为治疗这种具有挑战性的眼部疾病提供了一种有前景的临床可翻译方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信