Solvation chemistry in liquid electrolytes for rechargeable lithium batteries at low temperatures

EcoEnergy Pub Date : 2025-02-12 DOI:10.1002/ece2.94
Houzhen Li, Chuncheng Yan, Shuhua Wang
{"title":"Solvation chemistry in liquid electrolytes for rechargeable lithium batteries at low temperatures","authors":"Houzhen Li,&nbsp;Chuncheng Yan,&nbsp;Shuhua Wang","doi":"10.1002/ece2.94","DOIUrl":null,"url":null,"abstract":"<p>Over the past few decades, significant advancements have been made in the development of low-temperature liquid electrolytes for lithium batteries (LBs). Ongoing exploration of liquid electrolytes is crucial for further enhancing the performance of these batteries. Solvation chemistry plays a dominant role in determining the properties of the electrolyte, significantly affecting LBs performance at low temperatures (LTs). This review introduces solvation structures and their impact, discussing how these structures promote fast desolvation processes and contribute to the improvement of battery performance. Additionally, various solvent strategies are highlighted to refine solvation chemistry at LTs, including the use of linear and cyclic ethers/esters, as well as the role of functional groups within these solvents. The review also summarizes the impact of lithium salts containing organic/inorganic anions on solvation chemistry. Characterization techniques for solvent chemistry are discussed, providing a comprehensive analysis that offers valuable insights for developing next-generation electrolytes to ensure reliable battery performance across a wide temperature range.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"3 2","pages":"387-421"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.94","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past few decades, significant advancements have been made in the development of low-temperature liquid electrolytes for lithium batteries (LBs). Ongoing exploration of liquid electrolytes is crucial for further enhancing the performance of these batteries. Solvation chemistry plays a dominant role in determining the properties of the electrolyte, significantly affecting LBs performance at low temperatures (LTs). This review introduces solvation structures and their impact, discussing how these structures promote fast desolvation processes and contribute to the improvement of battery performance. Additionally, various solvent strategies are highlighted to refine solvation chemistry at LTs, including the use of linear and cyclic ethers/esters, as well as the role of functional groups within these solvents. The review also summarizes the impact of lithium salts containing organic/inorganic anions on solvation chemistry. Characterization techniques for solvent chemistry are discussed, providing a comprehensive analysis that offers valuable insights for developing next-generation electrolytes to ensure reliable battery performance across a wide temperature range.

Abstract Image

低温下可充电锂电池液体电解质的溶剂化化学
在过去的几十年里,锂电池低温液体电解质的研究取得了重大进展。对液体电解质的持续探索对于进一步提高这些电池的性能至关重要。溶剂化化学在电解质的性质中起着主导作用,显著影响着lb在低温下的性能。本文介绍了溶剂化结构及其影响,讨论了这些结构如何促进快速脱溶过程并有助于提高电池性能。此外,还强调了各种溶剂策略,以改进LTs的溶剂化化学,包括线性和环醚/酯的使用,以及官能团在这些溶剂中的作用。综述了含有机/无机阴离子锂盐对溶剂化化学的影响。讨论了溶剂化学表征技术,提供了一个全面的分析,为开发下一代电解质提供了有价值的见解,以确保在广泛的温度范围内可靠的电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信