Exploring the Interplay of Lattice Dynamics and Charge Transport in Organic Semiconductors: Progress Toward Rational Phonon Engineering

Barbara M. T. C. Peluzo, Rahul Meena, Luca Catalano, Guillaume Schweicher, Michael T. Ruggiero
{"title":"Exploring the Interplay of Lattice Dynamics and Charge Transport in Organic Semiconductors: Progress Toward Rational Phonon Engineering","authors":"Barbara M. T. C. Peluzo,&nbsp;Rahul Meena,&nbsp;Luca Catalano,&nbsp;Guillaume Schweicher,&nbsp;Michael T. Ruggiero","doi":"10.1002/ange.202507566","DOIUrl":null,"url":null,"abstract":"<p>Organic semiconductors (OSCs) have garnered significant attention due to their potential use in flexible, lightweight, and cost-effective electronic devices. Despite their promise, the assembly of organic molecules into the condensed phase promotes a diverse set of lattice dynamics that introduce a detrimental modulation in the intermolecular electronic structure—termed dynamic disorder—that results in charge carrier mobilities that are orders of magnitude lower than inorganic semiconductors. This dynamic disorder is generally associated with low-frequency phonons, yet whether a small subset of modes or a broad range of phonons  drives dynamic disorder remains contested. Resolving this debate is critical for defining how targeted phonon engineering could practically improve OSC performance. In this review, we explore progress toward uncovering the interplay between lattice dynamics and charge transport in OSCs, focusing on the critical role of thermally activated phonons. We describe the powerful insight that mode-resolved analyses of electron–phonon interactions lends toward the rational design of new materials. We highlight recent efforts to achieve this, showcasing proposed strategies to mitigate dynamic disorder through molecular and crystal design. This work offers an overview of the insight gained toward understanding the fundamental mechanisms governing charge transport in OSCs and outlines pathways for enhancing performance via targeted manipulation of interatomic/intermolecular interactions and resulting phonon modes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202507566","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202507566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organic semiconductors (OSCs) have garnered significant attention due to their potential use in flexible, lightweight, and cost-effective electronic devices. Despite their promise, the assembly of organic molecules into the condensed phase promotes a diverse set of lattice dynamics that introduce a detrimental modulation in the intermolecular electronic structure—termed dynamic disorder—that results in charge carrier mobilities that are orders of magnitude lower than inorganic semiconductors. This dynamic disorder is generally associated with low-frequency phonons, yet whether a small subset of modes or a broad range of phonons  drives dynamic disorder remains contested. Resolving this debate is critical for defining how targeted phonon engineering could practically improve OSC performance. In this review, we explore progress toward uncovering the interplay between lattice dynamics and charge transport in OSCs, focusing on the critical role of thermally activated phonons. We describe the powerful insight that mode-resolved analyses of electron–phonon interactions lends toward the rational design of new materials. We highlight recent efforts to achieve this, showcasing proposed strategies to mitigate dynamic disorder through molecular and crystal design. This work offers an overview of the insight gained toward understanding the fundamental mechanisms governing charge transport in OSCs and outlines pathways for enhancing performance via targeted manipulation of interatomic/intermolecular interactions and resulting phonon modes.

Abstract Image

探索有机半导体中晶格动力学与电荷输运的相互作用:理性声子工程的进展
有机半导体(OSCs)由于其在柔性、轻量化和高性价比电子器件中的潜在应用而引起了人们的极大关注。尽管有机分子的前景很好,但将有机分子组装成凝聚态会促进多种晶格动力学,从而在分子间电子结构中引入有害的调制(称为动态无序),从而导致电荷载流子迁移率比无机半导体低几个数量级。这种动态紊乱通常与低频声子有关,但是否一小部分模式或广泛范围的声子驱动动态紊乱仍然存在争议。解决这一争论对于确定目标声子工程如何实际提高OSC性能至关重要。在这篇综述中,我们探讨了揭示晶格动力学与osc中电荷输运之间相互作用的进展,重点关注热激活声子的关键作用。我们描述了电子-声子相互作用的模式分辨分析有助于合理设计新材料的强大洞察力。我们强调了最近为实现这一目标所做的努力,展示了通过分子和晶体设计来减轻动态紊乱的建议策略。这项工作概述了对理解OSCs中控制电荷传输的基本机制所获得的见解,并概述了通过有针对性地操纵原子间/分子间相互作用和由此产生的声子模式来提高性能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信