Advanced bandgap grading techniques for high-efficiency FA-based tin perovskite solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Rajesh Kumar Sharma , Hitarth Narsi Patel , Dhruv Singh Thakur , Vivek Garg , Shivendra Yadav
{"title":"Advanced bandgap grading techniques for high-efficiency FA-based tin perovskite solar cells","authors":"Rajesh Kumar Sharma ,&nbsp;Hitarth Narsi Patel ,&nbsp;Dhruv Singh Thakur ,&nbsp;Vivek Garg ,&nbsp;Shivendra Yadav","doi":"10.1016/j.solmat.2025.113791","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript explores a novel perovskite solar cell (PSC) design incorporating bandgap grading within the absorber layer, utilizing FASnI<sub>3</sub> as the absorber material, to enhance efficiency and approach the Shockley-Queisser (SQ) limit. A systematic investigation of bandgap grading in the perovskite absorber, including linear and parabolic schemes, was conducted to assess their impact on performance. The initial co-optimization of absorber thickness and defect density (<em>N</em><sub>t</sub>) to 210 nm and 1 × 10<sup>13</sup> cm<sup>−3</sup>, resulted in a power conversion efficiency (PCE) of 14.10 %. Incorporating stoichiometric variation to achieve a broader bandgap grading range of 1.4–2.4 eV further enhanced the PCE to 15.75 %. Optimization of the absorber's acceptor doping concentration (<em>N</em><sub>A</sub>) to 3 × 10<sup>16</sup> cm<sup>−3</sup> yielded a PCE of 16.05 %, while fine-tuning the top-to-bottom composition ratio to 0.5/1 improved the PCE to 17.90 %. The adoption of parabolic grading, characterized by a bowing parameter (β) of 0.25 and a minimal value (MV) of 0.78, achieved a peak PCE of 19.20 %, with an open-circuit voltage (<em>V</em><sub>OC</sub>) of 0.78 V, short-circuit current density (<em>J</em><sub>SC</sub>) of 30.48 mA cm<sup>−2</sup>, and fill factor (FF) of 81.23 %. This work introduces an innovative approach to bandgap grading in perovskite absorbers and highlights its potential to unlock high-efficiency photovoltaic performance for next-generation PSCs.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113791"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003927","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript explores a novel perovskite solar cell (PSC) design incorporating bandgap grading within the absorber layer, utilizing FASnI3 as the absorber material, to enhance efficiency and approach the Shockley-Queisser (SQ) limit. A systematic investigation of bandgap grading in the perovskite absorber, including linear and parabolic schemes, was conducted to assess their impact on performance. The initial co-optimization of absorber thickness and defect density (Nt) to 210 nm and 1 × 1013 cm−3, resulted in a power conversion efficiency (PCE) of 14.10 %. Incorporating stoichiometric variation to achieve a broader bandgap grading range of 1.4–2.4 eV further enhanced the PCE to 15.75 %. Optimization of the absorber's acceptor doping concentration (NA) to 3 × 1016 cm−3 yielded a PCE of 16.05 %, while fine-tuning the top-to-bottom composition ratio to 0.5/1 improved the PCE to 17.90 %. The adoption of parabolic grading, characterized by a bowing parameter (β) of 0.25 and a minimal value (MV) of 0.78, achieved a peak PCE of 19.20 %, with an open-circuit voltage (VOC) of 0.78 V, short-circuit current density (JSC) of 30.48 mA cm−2, and fill factor (FF) of 81.23 %. This work introduces an innovative approach to bandgap grading in perovskite absorbers and highlights its potential to unlock high-efficiency photovoltaic performance for next-generation PSCs.
高效fa基锡钙钛矿太阳能电池先进带隙分级技术
本文探讨了一种新的钙钛矿太阳能电池(PSC)设计,利用FASnI3作为吸收材料,在吸收层内结合带隙分级,以提高效率并接近Shockley-Queisser (SQ)极限。系统地研究了钙钛矿吸收器的带隙分级,包括线性和抛物线方案,以评估它们对性能的影响。吸收剂厚度和缺陷密度(Nt)初始优化为210 nm和1 × 1013 cm−3,功率转换效率(PCE)为14.10%。结合化学计量学变化来实现1.4-2.4 eV的更宽带隙分级范围,进一步将PCE提高到15.75%。当吸收剂的受体掺杂浓度(NA)为3 × 1016 cm−3时,PCE为16.05%;当吸收剂的上下组成比为0.5/1时,PCE为17.90%。采用弯曲参数(β)为0.25,最小值(MV)为0.78的抛物线级配,获得了19.20%的峰值PCE,开路电压(VOC)为0.78 V,短路电流密度(JSC)为30.48 mA cm−2,填充因子(FF)为81.23%。这项工作介绍了钙钛矿吸收剂带隙分级的创新方法,并强调了其为下一代psc解锁高效光伏性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信