{"title":"Field Dislocation Mechanics, Conservation of Burgers vector, and the augmented Peierls model of dislocation dynamics","authors":"Amit Acharya","doi":"10.1016/j.ijsolstr.2025.113491","DOIUrl":null,"url":null,"abstract":"<div><div>Dissipative models for the quasi-static and dynamic response due to slip in an elastic body containing a single slip plane of vanishing thickness are developed. Discrete dislocations with continuously distributed cores can glide on this plane, and the models are developed as special cases of a fully three-dimensional theory of plasticity induced by dislocation motion. The reduced models are compared and contrasted with the augmented Peierls model of dislocation dynamics. A primary distinguishing feature of the reduced models is the a-priori accounting of space–time conservation of Burgers vector during dislocation evolution. A physical shortcoming of the developed models as well as the Peierls model with regard to a dependence on the choice of a distinguished, coherent reference configuration is discussed, and a testable model without such dependence is also proposed.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"320 ","pages":"Article 113491"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832500277X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dissipative models for the quasi-static and dynamic response due to slip in an elastic body containing a single slip plane of vanishing thickness are developed. Discrete dislocations with continuously distributed cores can glide on this plane, and the models are developed as special cases of a fully three-dimensional theory of plasticity induced by dislocation motion. The reduced models are compared and contrasted with the augmented Peierls model of dislocation dynamics. A primary distinguishing feature of the reduced models is the a-priori accounting of space–time conservation of Burgers vector during dislocation evolution. A physical shortcoming of the developed models as well as the Peierls model with regard to a dependence on the choice of a distinguished, coherent reference configuration is discussed, and a testable model without such dependence is also proposed.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.