Substitutional doping-induced tunable van der Waals heterostructures of X-WSe2/Ti2CO2 in optoelectronic properties: A first-principles study

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhixin Hou , Jieshi Chen , Yi Zheng , Chun Yu , Hao Lu , Kai Xiong , Shuye Zhang
{"title":"Substitutional doping-induced tunable van der Waals heterostructures of X-WSe2/Ti2CO2 in optoelectronic properties: A first-principles study","authors":"Zhixin Hou ,&nbsp;Jieshi Chen ,&nbsp;Yi Zheng ,&nbsp;Chun Yu ,&nbsp;Hao Lu ,&nbsp;Kai Xiong ,&nbsp;Shuye Zhang","doi":"10.1016/j.vacuum.2025.114529","DOIUrl":null,"url":null,"abstract":"<div><div>This study constructed the X-WSe<sub>2</sub>/Ti<sub>2</sub>CO<sub>2</sub> vdW-HS and explored the doping effects of transition metal elements X (X being V, Nb, Ta, Mo, or Tc) on the W or Se sites of WSe<sub>2</sub> in the heterojunction. First-principles calculations revealed that all structures possess stability, with those doped at the W site mostly exhibiting metallic properties; whereas those doped at the Se site are all semiconductors, and for elements in the same period, Nb, Mo, and Tc doping reduced the bandgap from 0.4 eV to 0.32 eV–0.213 eV. The order of interlayer charge transfer in the heterojunction is Tc &gt; Mo &gt; V &gt; Ta &gt; Nb (W site) and Ta &gt; Nb &gt; Mo &gt; V &gt; Tc (Se site). The optical absorption coefficient in the visible light range can reach as high as 4.8 × 10<sup>5</sup> cm<sup>−1</sup> (Mo-doped Se). The main reason for these phenomena is that the doping of X has different filling effects on the CB and VB of the system, causing shifts in the <em>E</em><sub><em>f</em></sub> and atomic orbitals, thereby achieving regulation of the heterojunction properties. These findings provide a theoretical basis for the design and optimization of high-performance optoelectronic devices.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"240 ","pages":"Article 114529"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25005196","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study constructed the X-WSe2/Ti2CO2 vdW-HS and explored the doping effects of transition metal elements X (X being V, Nb, Ta, Mo, or Tc) on the W or Se sites of WSe2 in the heterojunction. First-principles calculations revealed that all structures possess stability, with those doped at the W site mostly exhibiting metallic properties; whereas those doped at the Se site are all semiconductors, and for elements in the same period, Nb, Mo, and Tc doping reduced the bandgap from 0.4 eV to 0.32 eV–0.213 eV. The order of interlayer charge transfer in the heterojunction is Tc > Mo > V > Ta > Nb (W site) and Ta > Nb > Mo > V > Tc (Se site). The optical absorption coefficient in the visible light range can reach as high as 4.8 × 105 cm−1 (Mo-doped Se). The main reason for these phenomena is that the doping of X has different filling effects on the CB and VB of the system, causing shifts in the Ef and atomic orbitals, thereby achieving regulation of the heterojunction properties. These findings provide a theoretical basis for the design and optimization of high-performance optoelectronic devices.
取代掺杂诱导的X-WSe2/Ti2CO2可调谐范德瓦尔斯异质结构的光电性质:第一性原理研究
本研究构建了X-WSe2/Ti2CO2 vdW-HS,探讨了过渡金属元素X (X为V、Nb、Ta、Mo或Tc)在异质结WSe2的W或Se位点上的掺杂效应。第一性原理计算表明,所有结构都具有稳定性,在W位掺杂的结构大多表现出金属性质;而在Se位点掺杂的都是半导体,在同一时期,Nb、Mo和Tc的掺杂使带隙从0.4 eV减小到0.32 eV - 0.213 eV。异质结层间电荷转移的顺序为Tc >;莫在V比;助教比;Nb (W位)和Ta >;Nb祝辞莫在V比;Tc (Se site)。在可见光范围内的光吸收系数高达4.8 × 105 cm−1 (mo掺杂Se)。产生这些现象的主要原因是X的掺杂对体系的CB和VB有不同的填充作用,引起Ef轨道和原子轨道的位移,从而实现对异质结性质的调控。这些发现为高性能光电器件的设计和优化提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信