{"title":"Ion emission efficiency of Ag+ ions from silver ion-conducting glass under atmospheric pressure","authors":"Daigo Ito, Daisuke Urushihara, Yusuke Daiko","doi":"10.1016/j.ssi.2025.116941","DOIUrl":null,"url":null,"abstract":"<div><div>By sharpening ion-conductive glass and applying a high voltage, conducting species ions are released from the glass tip. The ion emission of Ag<sup>+</sup> ions under atmospheric pressure was investigated. Under atmospheric pressure, there is a possibility that various ions are produced as a result of corona discharge. To analyze the efficiency of Ag<sup>+</sup> ion emission from the tip of sharpening glass, a quartz crystal microbalance was used to simultaneously measure the mass of the emitted ions and the ion current value. In an air atmosphere at room temperature, the efficiency of Ag<sup>+</sup> ion emission was only ∼20 %. The efficiency tended to decrease further in an oxygen atmosphere. On the other hand, the emission efficiency reaches approximately 100 % in N<sub>2</sub> atmosphere. The efficiency of Ag<sup>+</sup> ion emission under atmospheric pressure with various conditions are discussed in this paper.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"428 ","pages":"Article 116941"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001602","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
By sharpening ion-conductive glass and applying a high voltage, conducting species ions are released from the glass tip. The ion emission of Ag+ ions under atmospheric pressure was investigated. Under atmospheric pressure, there is a possibility that various ions are produced as a result of corona discharge. To analyze the efficiency of Ag+ ion emission from the tip of sharpening glass, a quartz crystal microbalance was used to simultaneously measure the mass of the emitted ions and the ion current value. In an air atmosphere at room temperature, the efficiency of Ag+ ion emission was only ∼20 %. The efficiency tended to decrease further in an oxygen atmosphere. On the other hand, the emission efficiency reaches approximately 100 % in N2 atmosphere. The efficiency of Ag+ ion emission under atmospheric pressure with various conditions are discussed in this paper.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.