Stability of background perturbation for Boltzmann equation

IF 2.3 1区 数学 Q1 MATHEMATICS
Yu-Chu Lin , Haitao Wang , Kung-Chien Wu
{"title":"Stability of background perturbation for Boltzmann equation","authors":"Yu-Chu Lin ,&nbsp;Haitao Wang ,&nbsp;Kung-Chien Wu","doi":"10.1016/j.matpur.2025.103762","DOIUrl":null,"url":null,"abstract":"<div><div>Consider the Boltzmann equation in the perturbation regime. Since the macroscopic quantities in the background global Maxwellian are obtained through measurements, there are typically some errors involved. This paper investigates the effect of background variations on the solution for a given initial perturbation. Our findings demonstrate that the solution changes continuously with variations in the background and provide a sharp time decay estimate of the associated errors. The proof relies on refined estimates for the linearized solution operator and a proper decomposition of the nonlinear solution.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103762"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001060","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the Boltzmann equation in the perturbation regime. Since the macroscopic quantities in the background global Maxwellian are obtained through measurements, there are typically some errors involved. This paper investigates the effect of background variations on the solution for a given initial perturbation. Our findings demonstrate that the solution changes continuously with variations in the background and provide a sharp time decay estimate of the associated errors. The proof relies on refined estimates for the linearized solution operator and a proper decomposition of the nonlinear solution.
玻尔兹曼方程背景摄动的稳定性
考虑扰动状态下的玻尔兹曼方程。由于背景全局麦克斯韦方程组中的宏观量是通过测量得到的,通常会有一些误差。本文研究了背景变化对给定初始扰动解的影响。我们的研究结果表明,解决方案随着背景的变化而连续变化,并提供了相关误差的尖锐时间衰减估计。该证明依赖于对线性化解算子的精确估计和对非线性解的适当分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信